Answer:
<h2>67%</h2>
Explanation:
<h2>Thus the % composition of glucose by mass is carbon 40.0 % oxygen 53.3 % hydrogen 6.7 % in this way, the % composition by mass of any compound can be calculated provided that is formed is known. </h2>
During a phase change the temperature does not change since all of the heat is being absorbed in order to break the intermolecular forces. Due to that, the formula will not need to have T in it and is actually q=nΔH(v).
n=the number of moles (in this case 2.778mol of water since you divide 50g by 18g/mol).
ΔH(v)=the molar heat of vaporization (in this case 40.7kJ/mol).
q=the heat that must be absorbed
q=2.778mol×40.7kJ/mol
q=113.1kJ
Therefore the water needs to absorb 1.13×10²kJ.
I hope this helps. Let me know if anything is unclear.
<span>bright yellow light and lots of heat-energy.</span>
Answer:
529.2 N
Explanation:
As we have studied the first law of motion, which states that every action has some reaction, equal in magnitude but having an opposite direction.
The force that is acting on the student will be due to gravitational force, that is equal to his weight.
F=mg: 54kg x 9.8m/s^2 =529.2 N
So the weight of student is exerting downwards towards the stool and land. The stool will also exert a force on the student that will be equal in magnitude but opposite in direction, then it will be 529.2 N.
This is because the student is sitting in a constant state and all the weight is exerted on the stool.
Note: This answer is very generic supposing that all the weight of the student is on stool. But, if we suppose that student's legs are on floor so it means the force of gravity acting on the stool has become less because student's mass on stool is less. So the answer would be a force somehow less than 529.2 N. However, since the question asked normal force, it would be weight of student in general terms.
Hope it helps!