Period 4 transition element that forms 2+ ion with a half‐filled d sub level is
Manganese (Mn)
What is the half-filled d sub-level?
Transition metals are an interesting and challenging group of elements. They have perplexing patterns of electron distribution that don’t always follow the electron-filling rules. Predicting how they will form ions is also not always obvious.
Transition metals belong to the d block, meaning that the d sublevel of electrons is in the process of being filled with up to ten electrons. Many transition metals cannot lose enough electrons to attain a noble-gas electron configuration. In addition, the majority of transition metals are capable of adopting ions with different charges. Iron, which forms either the Fe2+ or Fe3+ ions, loses electrons as shown below.
Some transition metals that have relatively few d electrons may attain a noble-gas electron configuration. Scandium is an example. Others may attain configurations with a full d sublevel, such as zinc and copper.
to know more about half-filled d sub-level
brainly.com/question/24780241
#SPJ4
Carbocation
I guess pls tell me if it wrong
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
Answer:
(2) Organelles must work together and their
activities must be coordinated
Explanation:
Organelles are usually located in cells. They are saddled with the role of performing specific functions in the cells for the overall functioning of life. In eukaryotic cells, the organelles are membrane bounded but in prokaryotic or primitive cells such is not the case.
Examples of cell organelles are ribosome, food vacuole, nucleus e.t.c. Just like organs in the body, organelles must work together in order to enhance life.