Answer:
<em>The actual dimensions of the classroom are 50 cm x 70 cm</em>
Explanation:
<u>Scaling
</u>
When we need to represent real-world dimensions into small spaces, we use scaling. Distance scaling tells us what is the equivalence between the real units and the scaled units. In this case, we are told that 10 cm is equivalent to 1 meter. As 1 meter is 100 cm, it means that the scale is 100/10=10. Thus, each centimeter in the paper is equivalent to 10 cm in the real distance.
The classroom is 5 cm x 7 centimeters. Scaling back to the real values, the classroom has measures of 50 cm x 70 cm.
Answer:
8.362m/s
Explanation:
Given data
Mass m1= 7.77kg
Velocity v1= 7.77m/s
Mass m2= 8.88kg
Velocity v2= 8.88m/s
Apply the law of conservation of momentum for inelastic collision we have
m1v1+m2v2= (m+m2)V
7.77*7.77+ 8.88*8.88= (7.77+8.88)V
60.3729+78.8544= 16.65V
139.2273= 16.65V
Divide both sides by 16.65
V= 139.2273/16.65
V= 8.362m/s
Hence the final velocity is 8.362m/s
Gravitational pull changes between each planet while its the "MASS" which doesnt change
Answer:
A. Highly viscous and associated with violent eruptions
Explanation:
Most silica rich magma have high viscosity and huge amount of trapped gases within them. As they continue to upwell and expand, the gases causes violent eruptions near Volcanoes. Most granitic/rhyolitic magma are silica rich.
Answer:
Both of them are correct
Explanation:
Here both the technician are correct. A special puller and installer tool is required to remove and install the vibration damper. Removing and installing a damper is not an easy task, it requires a definite set of technique and tools.
According to Technician B if the inertia ring on the vibration damper is loose, the damper must be replaced is absolutely correct, inertia ring once loosened cannot be tightened. hence, we have change the the damper.