Answer:
3349J/kgC
Explanation:
Questions like these are properly handled having this fact in mind;
Quantity of heat = mcΔ∅
m = mass of subatance
c = specific heat capacity
Δ∅ = change in temperature
m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)
m₁ = mass of block = 500g = 0.5kg
c₁ = specific heat capacity of unknown substance
∅₂ = block initial temperature = 50oC
∅₁ = equilibrium temperature of block and water after mix= 25oC
m₂= mass of water = 2kg
c₂ = specific heat capacity of water = 4186J/kg C
∅₃ = intial temperature of water = 20oC
0.5c₁(50-25) = 2 x 4186(25-20)
And we can find c₁ which is the unknown specific heat capacity
c₁ =
= 3348.8J/kg C≅ 3349J/kg C
A triangle is just a shape...
Answer:
d. interaction atmosphere and biosphere interaction
Explanation:
hydrosphere, lithosphere, and biosphere interaction.
Ok so use trigonometry to work out the vertical component of velocity.
sin(25) =opp/hyp
rearrange to:
30*sin(25) which equals 12.67ms^-1
now use SUVAT to get the time of flight from the vertical component,
V=U+at
Where V is velocity, U is the initial velocity, a is acceleration due to gravity or g. and t is the time.
rearranges to t= (V+u)/a
plug in some numbers and do some maths and we get 2.583s
this is the total air time of the golf ball.
now we can use Pythagoras to get the horizontal component of velocity.
30^2-12.67^2= 739.29
sqrt739.29 = 27.19ms^-1
and finally speed = distance/time
so--- 27.19ms^-1*2.583s= 70.24m
The ball makes it to the green, and the air time is 2.58s
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw