K = 1/2 m x v^2
m = mass on the cart
V = velocity imparted to the cart
KA = 1/2 mA x vA^2.......................(1)
KB = 1/2 mB x vB^2........................(2)
Diving equation 1 by equation 2, we get -
KA/KB = mA/mB
= 2
KA = 2 x KB
Option A is correct
Recall that average velocity is equal to change in position over a given time interval,

so that the <em>x</em>-component of
is

and its <em>y</em>-component is

Solve for
and
, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.


Note that I'm reading the given details as

so if any of these are incorrect, you should make the appropriate adjustments to the work above.
<span>Creating plasma can be dangerous because of the high amount of ENERGY needed to create it.</span>
Oxygen has<span> a higher electro negativity that then Sulfur, so Sulfur </span>will<span> " lose" electrons to Oxygen and that </span>is<span> the electrons </span>will be<span> pulled closer to the Oxygen causing, for oxygen to </span>have a negative<span> charge and the Sulfur to </span>have<span> a positive charge</span>
Answer:

Explanation:
As the path is straight, so the speed is equivalent to velocity. Now. assuming that the acceleration and deceleration of the train are constant. So, change of velocity with respect to time for acceleration as well as deceleration is constant. Hence, the slope of the speed-time graph is constant for the time of acceleration as well as deceleration. The speed for the time from
to
is constant, so slope for this interval of time is zero. The speed-time graph is shown in the figure.
The total distance covered by the train during the entire journey is the area of the speed-time graph.
Area


As velocity is in
and time is in
so the unit of area is 
Hence, the total distance is
.