See
K.E=1/2(mass*velocity²)
so option B is the correct answer.
Brainliest pls :-)
The woman is correct because it is the pace he is moving not walking.
Answer:
a) L = 440 cm
Explanation:
In the open tube on one side and cowbell on the other, we have a maximum in the open part and a node in the closed part, therefore the resonance frequencies are
λ₁ = 4L fundamental
λ₃ = 4L / 3 third harmonic
λ₅ = 4L / 5 five harmonic
The violin string is a fixed cure in its two extracts, so both are nodes, their length from resonance wave are
λ₁ = 2L fundamental
λ₂ = 2L / 2 second harmonic
λ₃ = 2L / 3 third harmonic
λ₄= 2L / 4 fourth harmonic
They indicate that resonance occurs in the fourth harmonic, let's look for the frequency
v =λ f
for the fundamental
v = λ₀ f₀
V = 2L f₀
for the fourth harmonica
v = λ₄ f ’
v = L / 2 f'
2L f₀ = L / 2 f ’
f ’= 4 f₀
f ’= 4 440
f ’= 1760 Hz
for this frequency it has the resonance with the tube
f ’= 4L
L = f ’/ 4
L = 1760/4
L = 440 cm
b) let's find the frequency of the next harmonic in the tube
λ₃ = 4L / 3
λ₃ = 4 400/3
λ₃ = 586.6 cm
v = λf
f = v / λlam₃
f₃3 = 340 / 586.6
f3 = 0.579
as the minimum frequency on the violin is 440 Beam there is no way to reach this value, therefore there are no higher resonances
Answer:
10 feet
Explanation:
In a standard procedure, there should be an approximate value of 10 feet between the water pipe and the Earth. This is to prevent the contamination of water and also the corrosion of the water pipe. Most pipes are made of iron and in the presence of water, there can be a chemical reaction between the iron and water in the presence of oxygen.