The buoyant force exerted by a liquid is equal to the weight of the fluid <span>displaced.</span>
The acceleration is the correct answer
The electric field at the surface of the cylinder is 51428V/m
Given data:
• The length of the charge is l= 7m.
• The charge is q = 2μC..
• The radius the cylinder is r = 10 cm
Since the filament length is so large as compared to the cylinder length that the infinite line of charge can be assumed.
The expression to calculate the electric field is given as,
E=2kλ/r
Here, λ is the linear charge density.
Substitute the values in the above equation,
E = (2×9×109N⋅m^2/C^2×2×10^−6C)/0.1m×7m
E = 51428N/C×(V/m)/(N/C)
=51428V/m
An electric charge is the property of matter where it has more or fewer electrons than protons in its atoms. Electrons carry a negative charge and protons carry a positive charge. Matter is positively charged if it contains more protons than electrons, and negatively charged if it contains more electrons than protons.
Learn more about charge here:
brainly.com/question/19886264
#SPJ4
Force on the particle is defined as the application of the force field of one particle on another particle. The magnitude and direction of the electrical force will be 4.05×10⁴N towards the north.
<h3>What is electrical force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The given data in the problem is
q₁ is the negative charge = 6 µC=6×10⁻⁶ C
q₂ is the positive charge = 3 µC=3×10⁻⁶ C
r is the distance between the charges=0.002 m
is the electric force =?
The value of electric force will be;

Hence the magnitude and direction of the electrical force will be 4.05×10⁴N towards the north.
To learn more about the electrical force refer to the link;
brainly.com/question/1076352