Answer:
I think c is the answer but I have a little concern on d too
If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on. Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces
It produces only virtual images is the answer
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec
Answer:
Hi myself Shrushtee.
Explanation:
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside edge of the cylinder, which is sufficiently large (diameter of 2235 meters) that its curvature is not readably noticeable to the inhabitants. (The space station in the figure is not drawn to the scale of the human.) Once the space station is rotating at the necessary speed, how many minutes would it take the space station to make one revolution?
The distance traveled by the man in one revolution is simply the circumference of the space station, C = 2p R. From this result, you should be able to deduce the time it takes for the space station to sweep out a complete revolution.
<h2>
<em><u>P</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainleist</u></em></h2>