Dhshsjxixnsbwnsjxjj dhshsjsij sushi’s sun dhsjsixj bcshaixj. cdhejsj. debian. hcjeiwix h hcjdjs
Answer:
6ml
Step-by-step explanation:
=25%÷100%
=0•25
1.5l to ml
1L=1000ml
=1.5000ml÷0.25
=6ml
Answer:
Step-by-step explanation:
<em>Key Differences Between Covariance and Correlation
</em>
<em>The following points are noteworthy so far as the difference between covariance and correlation is concerned:
</em>
<em>
</em>
<em>1. A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
</em>
<em>2. Covariance is nothing but a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
</em>
<em>3. The value of correlation takes place between -1 and +1. Conversely, the value of covariance lies between -∞ and +∞.
</em>
<em>4. Covariance is affected by the change in scale, i.e. if all the value of one variable is multiplied by a constant and all the value of another variable are multiplied, by a similar or different constant, then the covariance is changed. As against this, correlation is not influenced by the change in scale.
</em>
<em>5. Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.
</em>
You can find more here: http://keydifferences.com/difference-between-covariance-and-correlation.html#ixzz4qg5YbiGj
Answer: 25 Dogs
Reason: If the ratio of cats to dogs is 2/1, there are 2 cats for every 1 dog. That would mean that the number of cats is double the number of dogs. 25 x 2 = 50
Answer:
a= -12
Step-by-step explanation:
because