1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
5

The sun is 1.5 × 108 km from Earth. The index of refraction for water is 1.349. How much longer would it take light from the sun

to reach Earth if the space between them were filled with water rather than a vacuum?
Physics
1 answer:
tankabanditka [31]3 years ago
4 0

Answer:

175s

Explanation:

time it takes sunlight to reach the earth in  vacuum

C=light speed=299792458m/s

X=1.5x10^8km=1.5x10^11m

c=X/t

T1=X/c

T1=1.5X10^11/299792458=500.34s

time it takes sunlight to reach the earth in  water:

First we calculate the speed of light in water taking into account the refractive index

Cw=299792458m/s/1.349=222233104.5m/s

T2=1.5x10^11/222233104.5m/s=675s

additional time it would take for the light to reach the earth

ΔT=T2-T1=675-500=175s

You might be interested in
A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so sma
mel-nik [20]

The angular speed of the merry-go-round reduced more as the sandbag is

placed further from the axis than increasing the mass of the sandbag.

The rank from largest to smallest angular speed is presented as follows;

[m = 10 kg, r = 0.25·R]

              {} ⇩

[m = 20 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 0.5·R]

              {} ⇩

[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 1.0·R]

Reasons:

The given combination in the question as obtained from a similar question online are;

<em>1: m = 20 kg, r = 0.25·R</em>

<em>2: m = 10 kg, r = 1.0·R</em>

<em>3: m = 10 kg, r = 0.25·R</em>

<em>4: m = 15 kg, r = 0.75·R</em>

<em>5: m = 10 kg, r = 0.5·R</em>

<em>6: m = 40 kg, r = 0.25·R</em>

According to the principle of conservation of angular momentum, we have;

I_i \cdot \omega _i = I_f \cdot \omega _f

The moment of inertia of the merry-go-round, I_m = 0.5·M·R²

Moment of inertia of the sandbag = m·r²

Therefore;

0.5·M·R²·\omega _i = (0.5·M·R² + m·r²)·\omega _f

Given that 0.5·M·R²·\omega _i is constant, as the value of  m·r² increases, the value of \omega _f decreases.

The values of m·r² for each combination are;

Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²

Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²

Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²

Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²

Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²

Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²

Therefore, the rank from largest to smallest angular speed is as follows;

Combination 3 > Combination 1 > Combination 5 = Combination 6 >

Combination 2

Which gives;

[<u>m = 10 kg, r = 0.25·R</u>] > [<u>m = 20 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 0.5·R</u>] > [<u>m = </u>

<u>10 kg, r = 0.5·R</u>] = [<u>m = 40 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 1.0·R</u>].

Learn more here:

brainly.com/question/15188750

6 0
2 years ago
Forces that are equal but oppistes are_____________ forces
Dima020 [189]
Balanced forces is the answer.
4 0
3 years ago
Helppppp me it's urgent please
Luda [366]

Light bends away from the normal, because it's moving from higher to lower refractive index.

Same bend-direction as when it goes from water into air.

4 0
3 years ago
HURRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Levart [38]
It is an example of "Elastic Potential Energy"

In short, Your Answer would be Option C

Hope this helps!
5 0
3 years ago
An electron initially has a speed 16 km/s along the x-direction and enters an electric field of strength 27 mV/m that points in
weqwewe [10]

Answer:

a)t=1.4\times 10^{-5}\ s

b)S= 46.4 cm

Explanation:

Given that

Velocity = 16 Km/s

V= 16,000 m/s

E= 27 mV/m

E=0.027 V/m

d= 22.5 cm

d= 0.225 m

a)

lets time taken by electron is t

d = V x t

0.225 = 16,000 t

t=1.4\times 10^{-5}\ s

b)

We know that

F = m a = E q                    ------------1

Mass of electron ,m

m=9.1\times 10^{-31}\ kg

Charge on electron

q=1.6\times 10^{-19}\ C

So now by putting the values in equation 1

a=\dfrac{E q}{m}

a=\dfrac{1.6\times 10^{-19}\times 0.027}{9.1\times 10^{-31}}\ m/s^2

a=4.74\times 10^{9}\ m/s^2

S= ut+\dfrac{1}{2}at^2

Here initial velocity u= 0 m/s

S= \dfrac{1}{2}\times 4.74\times 10^{9}\times (1.4\times 10^{-5})^2\ m

S=0.464 m

S= 46.4 cm

S is the deflection of electron.

4 0
4 years ago
Read 2 more answers
Other questions:
  • The force of gravity is stronger on Earth than it is on the planet mars. If an astronaut travels to Mars, what will happen to he
    9·2 answers
  • Projectile motion is an example of what kind of motion
    13·2 answers
  • 1 A. Graph the data below for a bicycle ride.
    5·1 answer
  • (OFFERING 20 POINTS)
    12·2 answers
  • What is mechanical energy?
    11·1 answer
  • Type of energy does a running refrigerator motor
    15·2 answers
  • A gun shoots a bullet with a velocity of 500 m/s. The gun is aimed horizontally and fired from a height of 1.5 m. How far does t
    7·1 answer
  • What electric force would a stationary 3.8 C charge experience if it were far away from any other charges
    5·1 answer
  • A sprinter starts from rest and runs with constant acceleration to a top speed of 12m/s in 4.0 seconds.
    9·1 answer
  • Technology has played a role in enabling swimmers to swim faster and faster.<br> True<br> False
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!