in the number line, the end points are DG, and the point in between is O
DG = 88
DO = 5x + 12
OG = 2x
Set the equation. The two parts (DO & OG) are equal to the whole (DG)
2x + 5x + 12 = 88
Simplify. Combine like terms
(2x + 5x) + 12 = 88
7x + 12 = 88
Isolate the x. Remember to do the opposite of PEMDAS. Subtract 12 from both sides
7x + 12 (-12) = 88 (-12)
7x = 76
Isolate the x. Divide 7 from both sides:
7x/7 = 76/7
x = 76/7
----------------------------------------------------------------------------------------------------------------------------
Find DO. Plug in "76/7" for x:
DO = 5x + 12
DO = 5(76/7) + 12
Simplify. Remember to follow PEMDAS. Multiply 76 with 5
DO = 380/7 + 12
Next, divide 380 with 7
DO = 54.29 (rounded)
Finally, add
DO = 54.29 + 12
DO = 66.29
66.29 is your answer
hope this helps
![\boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>
Explanation:</h2>
Here we have the following expression:
![\sqrt[4]{48p^7d^5}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D)
So we need to simplify it:
![\sqrt[4]{48p^7d^5} \\ \\ \\ We \ can \ write: \\ \\ p^7=p^4\cdot p^3 \\ \\ d^5=d^4\cdot d \\ \\ \\ So: \\ \\ \sqrt[4]{48p^4\cdot p^3\cdot d^4\cdot d} \\ \\ \\ By \ property: \\ \\ \sqrt[n]{x^n}=x \\ \\ \\ Finally: \\ \\ \boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D%20%5C%5C%20%5C%5C%20%5C%5C%20We%20%5C%20can%20%5C%20write%3A%20%5C%5C%20%5C%5C%20p%5E7%3Dp%5E4%5Ccdot%20p%5E3%20%5C%5C%20%5C%5C%20d%5E5%3Dd%5E4%5Ccdot%20d%20%5C%5C%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5B4%5D%7B48p%5E4%5Ccdot%20p%5E3%5Ccdot%20d%5E4%5Ccdot%20d%7D%20%5C%5C%20%5C%5C%20%5C%5C%20By%20%5C%20property%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%20%5C%5C%20%5C%5C%20Finally%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>Learn more:</h2>
Mathematical expressions: brainly.com/question/14200575#
#LearnWithBrainly
We have that
<span>A (-8, -2) and B(16,6)
step 1
find the distance AB in the x coordinates
dABx=(16-(-8))-----> 24 units
step 2
find coordinate x of P (Px)
Px=Ax+(3/5)*dABx------> Px=(-8)+(3/5)*24----> 6.4
step 3
F</span>ind the distance AB in the y coordinates
dABy=(6-(-2))-----> 8 units
step 4
find coordinate y of P (Py)
Py=Ay+(3/5)*dABy------> Py=(-2)+(3/5)*8----> 2.8
the coordinates of P are (6.4,2.8)
see the attached figure