Velocity of a wave is the amount of wavelength multiplied by its frequency. Moreover, derivations would be;wavelength?
Hence wavelength would be velocity divided by the frequency.Result is 2.1 mThank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
The skidding distance would be doubled
Explanation:
When the truck applies the brakes and slows down, its motion is a uniformly accelerated motion, so its skidding distance can be found by using the suvat equation

where
v = 0 is the final velocity (zero since the truck comes to a stop)
u is the initial velocity
a is the acceleration
s is the skidding distance
The acceleration can also be written as

where F is the force applied by the brakes and m the mass of the truck. Substituting into the previous equation,

We see that the skidding distance is proportional to the mass: therefore, if the mass of the truck is doubled, the skidding distance will double as well.
Here we go.
My abbreviations; KE = Kinetic Energy; GPE = Gravitational Potential Energy.
So first off, we know the fish has KE right when the bird releases it. Why? Because it has horizontal velocity after released! So let’s calculate it:
KE = 1/2(m)(V)^2
KE = 1/2(2)(18)^2
KE = 324 J
Nice!
We also know that the fish has GPE at its maximum height before release:
GPE = mgh
GPE = (2)(9.81)(5.40)
GPE = 105.95 J
Now, based on the *queue dramatic voice* LAW OF CONSERVATION OF ENERGY, we know all of the initial energy of the fish will be equal to the amount of final energy. And since the only form of energy when it hits the water is KE, we can write:
KEi + GPEi = KEf
(Remember - we found the initial energies before!)
(324) + (105.95) = KEf
KEf = 429.95J
And that’s you’re final answer! Notice how this value is MORE than the initial KE from before (324 J) - this is because all of the initial GPE from before was transformed into more KE as the fish fell (h decreased) and sped up (V increased).
If this helped please like it and comment!
A shield volcano i believe. hope this helped
Answer: assuming that the billiard balls are of identical weight the impacted billiard ball will move forward at around 0.5m/s (not considering energy conservation). The ball impacting the 2nd one would stop because most of its Kinetic energy would have been transferred into the not moving ball.
Explanation: hope this helps!