To solve this problem it is necessary to apply the concepts related to frequency and vibration of strings. Mathematically the frequency can be expressed as

Then the relation between two different frequencies with same wavelength would be


The beat frequency heard when the two strings are sounded simultaneously is



We have the velocity of the transverse waves in stretched string as


And,

Therefore the relation between the two is,


Finally substituting this value at the frequency beat equation we have


Therefore the beats per second are 11.92Hz
The technical definition of latitude is the angular distance north or south from the earth's equator measured through 90 degrees. ... Locations at lower latitudes receive stronger and more direct sunlight than locations near the poles. Energy input from the sun is the main driving force in the atmosphere.
The Seasons at Different Latitudes
The seasonal effects are different at different latitudes on Earth. Near the equator, for instance, all seasons are much the same. Every day of the year, the Sun is up half the time, so there are approximately 12 hours of sunshine and 12 hours of night.
When we consider Latitude alone as a control, we know that the low latitudes (say from the Equator to approximately 30 degrees N/S) are the warmest across the year (on an annual basis).
Answer: the external agent must do work equal to -1.3 × 10⁻⁸ J
Explanation:
Given that;
Mass M1 = 7.0 kg
r = 3.0/2 m = 1.5 m
Mass M2 = 21 kg
we know that G = 6.67 × 10⁻¹¹ N.m²/kg²
work done by an external agent W = -2GM2M1 / r
so we substitute
W = (-2 × 6.67 × 10⁻¹¹ × 21 × 7) / 1.5
W = -1.96098 × 10⁻⁸ / 1.5
W = -1.3 × 10⁻⁸ J
Therefore the external agent must do work equal to -1.3 × 10⁻⁸ J
Answer:
hello, yes or nou sorry jaja
Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)