Answer:
none
Explanation:
it's to high up to be affected by the gravity
Try this solution, answers are marked with red colour.
Deposition occurs when gravity's downward pull on sediment is greater than the push of flowing water<span> or wind. Rivers and streams erode soil, rock, and sediment. Sediment is tiny grains of broken-down rock.</span>
Answer:
Explanation:
Given
Temperature of Room 
Area of Person 
Temperature of skin 
Heat transfer coefficient 
Emissivity of the skin and clothes 

Total rate of heat transfer=heat Transfer due to Radiation +heat transfer through convection
Heat transfer due radiation 
where 


Heat Transfer due to convection is given by




If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).