The answer to the question is choice 2
Answer:
The speed was 26.91m/s (96.9 km/h)
Explanation:
Here you have to consider that at the beginning you have an amount of kinetic energy (K) that is dissipated because of the work done by friction forces (T). Since the car is stopped after the accident, all the energy has been dissipated. Thus,
.
The definition of the kinetic energy is
.
The work done by the friction forces is:
. Where <em>f</em> is the friction coefficient, <em>g</em> is the gravity acceleration, <em>m i</em>s the mass of the car and <em>d</em> is the skid marks longitude. Therefore,

Since <em>m</em> is in both sides it can be cancelled so it is not necessary to considered.
Then, the speed is determined by the following equation:

Answer:
V(car) = V(truck) at t = Dt/2
acceleration = v(car) = D/t^2
Explanation:
acceleration = v(car) = D/t^2
Since the average velocities must be the same, the car's final velocity must be twice the trunk velocity assuming the car start with zero velocity, since acceleration remain the same throughout the journey velocities at half-time point must be equal.
Answer:
a). P=11.04kW
b). Pmax=11.38 kW
c). Wt=6423.166kJ
Explanation:
The power of the motor when the speed is constant is the work in a determinate time.

The work is the force the is applicated in a distance so
W=F*d
replacing:
and
determinate distance in time is velocity so
a).


b).
The maximum power must the motor provide, is the maximum force with the maximum speed of the motor in this case
The first step is find the acceleration so

The maximum force is when the car is accelerating so

so the maximum force is the maximum force by the maximum speed

c).
The total energy transfer without any friction is the weight move in the high axis y in this case, so is easy to know that distance
W=m*g*h
h=Length*sin(33.5)
W=m*g*Length*sin(33.5)
W=950 kg*9.8* 1250m*sin(33.5)
W=6423166.667 kJ
W=6423.166 kJ