Besides the Sun, planets and their moons, there are still other celestial bodies in the universe. Actually, there is more than what we know of. The universe is endless and timeless. It also contains stars, comets, asteroids, meteorites and the galaxies.
Based on the data provided, the thermal energies at the given time intervals are as follows:
- At time t = 0.0 secs; thermal energy = 0.0 J
- At time, t = 0.8 secs; thermal energy = 0.0 J
- At time, t = 2.0 secs; thermal energy = 3.9 J
- At time, t = 2.8 secs; thermal energy = 6.7 J
<h3>What is the law of conservation of energy?</h3>
The law of conservation of energy states that the total energy in an isolated system is conserved.
For a ball undergoing energy conversion between kinetic and potential energy, the sum of the energy remains constant.
Any reduction in total energy is due to conversion of some energy to thermal energy.
- Sum of energy: Kinetic + potential + thermal = 15.2 J
- Thermal energy = 15.2 - (PE + KE)
At time t = 0.0 secs
Thermal energy = 15.2 - (15.2 + 0.0)
Thermal energy = 0.0 J
At time, t = 0.8 secs
Thermal energy = 15.2 - (4.7 + 10.5)
Thermal energy = 0.0 J
At time, t = 2.0 secs
Thermal energy = 15.2 - (7.4 + 3.9)
Thermal energy = 3.9 J
At time, t = 2.8 secs
Thermal energy = 15.2 - (8.5 + 0.0)
Thermal energy = 6.7 J
Therefore, the thermal energies at the given time intervals are as follows:
- At time t = 0.0 secs; thermal energy = 0.0 J
- At time, t = 0.8 secs; thermal energy = 0.0 J
- At time, t = 2.0 secs; thermal energy = 3.9 J
- At time, t = 2.8 secs; thermal energy = 6.7 J
Learn more about conservation of energy at: brainly.com/question/166559
The wavelength<span> can always be determined by </span>measuring<span> the distance between any two corresponding points on adjacent </span>waves<span>. In the case of a longitudinal </span>wave, awavelength measurement<span> is made by </span>measuring<span> the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
> Please rate 5 stars <</span>
Answer:
h=20.38 m
Explanation:
Given that
Initial speed of object u = 20 m/s
Acceleration 
We know that

Here acceleration and velocity is in opposite direction so the object will come rest after reaching at distance h.When body will reach at its highest position then velocity will become zero(v=0).
Now by putting the values


h=20.38 m
A) seismic waves
b) sound waves
sound waves are traveling vibrations of particles in media (air, water, metal, etc) so they can’t travel through empty space (vacuums) because there are no atoms or molecules to vibrate.
seismic waves are mechanical waves and require a medium for propagation, hence, they cannot travel through a vacuum.
hope this helps :)