Answer:
a) t = 0.74s
b) D = 4.76m
c) Vf = 5.35m/s
Explanation:
The ball starts rolling when Vf = ωf*R.
We know that:
Vf = Vo - a*t
ωf = ωo + α*t
With a sum of forces on the ball:




With a sum of torque on the ball:



Replacing both accelerations:


t=0.74s
The distance will be:


Final velocity:

Vf=5.35m/s
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
it's pray hoped this helped
Answer:
If there is a net force acting on an object, the object will have an acceleration and the object's velocity will change. ... Newton's second law states that for a particular force, the acceleration of an object is proportional to the net force and inversely proportional to the mass of the object.
Explanation: