Three important properties of the diagonals of a rhombus that we need for this problem are:
1. the diagonals of a rhombus bisect each other
2. the diagonals form two perpendicular lines
3. the diagonals bisect the angles of the rhombus
First, we can let O be the point where the two diagonals intersect (as shown in the attached image). Using the properties listed above, we can conclude that ∠AOB is equal to 90° and ∠BAO = 60/2 = 30°.
Since a triangle's interior angles have a sum of 180°, then we have ∠ABO = 180 - 90 - 30 = 60°. This shows that the ΔAOB is a 30-60-90 triangle.
For a 30-60-90 triangle, the ratio of the sides facing the corresponding anges is 1:√3:2. So, since we know that AB = 10, we can compute for the rest of the sides.



Similarly, we have



Now, to find the lengths of the diagonals,


So, the lengths of the diagonals are 10 and 10√3.
Answer: 10 and 10√3 units
Answer:
1, 3, 4
Step-by-step explanation:
Since the y intercept is the only number without a varible you choose the ones that are the same
the answer is 21 it really not it just I have to do this for this app that won't give me these for answers
5 miles high is one of the sides of a triangle depending on accuracy level
h^2=x^2+y^2
we don't have 2 distances
Tan A=O/a
O=a tan A
We solve for O because the angle is at the top of the line going up and we want the opposite angle that is along the ground
O=5×tan(173.7/2)=90.854033512
The distance he can see is:
90.85*2~181.7 miles
Now we need to find the distance between lines:
The north south distance between each line is 69 miles
thus the number of degrees he will see will be:
181.7/69
=2 19/30