1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
9

Solve for x. x=.................

Mathematics
2 answers:
wolverine [178]3 years ago
5 0
X= 2 that’s basically it
Nitella [24]3 years ago
4 0

Answer:

X=2

If you substitute 2 in for x, you get 35 for both angles. Since both sides are the same, the answer has to be 2.

You might be interested in
1. Use successive differences to classify the function represented in the table. Here is the table:
Alex_Xolod [135]
We see that the differences are -9, -3, +3, and +9.  Thus, we see that the function is symmetric about x=2 (I'm assuming the five values correspond to x=0, 1, 2, 3, 4) and increases at a rate similar to (x-2) squared.  With that in mind, we classify this function as a parabola, as the standard form of a parabola (y=a(x-h)^2 + k) shows similar growth to this function.
5 0
3 years ago
LAST QUESTION! Please help! Please
prohojiy [21]
The correct answer is:  [C]:  " 37, 680 mm³ " .
________________________________________________________

Explanation:
________________________________________________________

The formula for the volume, "V" , of a cylinder is:

                →   V  =   \pi  *  r²  *  h  ;  

                           → in which "r = length of radius" ;  "h = height" ;             ________________________________________________________

     {Note that the formula for the volume, "V" , of a cylinder is:
     
                              →   " Base area * height " .
________________________________________________________

         →  Specifically, for a cylinder, the "Base area" is the area of a "circle", because the base is a circle;  

          →  and the formula for the "area of a circle = [tex] \pi [/tex] * r² " ;

          →  in which "r = length of the radius" . 

As such, the formula for the volume, "V" ,  of a cylinder is:
______________________________________________________
       →   Volume  =  (Base area) * (height) ; 

                             =  ( \pi r² ) * h  ;
______________________________________________________

       →   V  =  \pi  r²  h  
; 

                 in which:  "V = volume  {in "cubic units" ;  or, write as " units³ " } ;

                                  "r = radius length" ; 

                                  "h = height" ;
_____________________________________________________
  →  Now, we shall solve for the volume, "V", of the given cylinder in this question/problem:
_____________________________________________________

          →   V  = \pi  r²  h  ; 

                      in which: "r = radius = ? "  ; 

                        →  To find "r" ;  We are given the diameter, "d = 40 mm" ; 
 
                        →  Note that:  "r = d/2 = (40 mm) / 2 = 20 mm " ; 

                              {i.e., "the radius is half of the diameter".}.  

                        →  " r = 20 mm " ;  

                        →  " h = height = 30 mm " {given in figure) ; 
      
                        →  For \pi ; let us use " 3.14 " — which is a commonly used approximation.  

             →  For this question/problem, none of the answer choices are given "in terms of \pi " ;
     →   so we shall use this "numerical value" as an "approximation" ; 
_______________________________________________________

Now, let us plug in our known values into the formula;
     and calculate to find the volume, "V", of our given cylinder; as follows:
_______________________________________________________

    →    V  = \pi  r²  h  ; 

                =  (3.14) * (20 mm)²  * (30 mm) ; 

                =  (3.14) * (20)² *  (mm)²  * (30 mm) ;
          
                =  (3.14) * (20)² * (30) * (mm³) ;

                =  (3.14) * (400) * (30) * (mm³) ; 

                =  37, 680 mm³
__________________________________________________

The volume is
:  " 37, 680 mm³  " ;  

          →  which is:  Answer choice  [C]:  " 37, 680 mm³ " .
___________________________________________________
Hope this answer and explanation—albeit lengthy—is of some help to you.
Best wishes!
6 0
3 years ago
The fraction 1/2 and 3/6 are equal. True or False
Dmitriy789 [7]

Answer:

true

Step-by-step explanation:

3 is half of 6

1 is half of 2

5 0
3 years ago
Read 2 more answers
a rectangular room is twice as long as its breadth and its peimeter is 540 m. find the number of bricks of size 20 cm ×12cm to p
balu736 [363]

Answer:

Step-by-step explanation:

breadth = x

length = 2x

Perimeter = 540m

2*( length + breadth ) = 540

2 *(2x + x) = 540

3x = 540/2

3x = 270

x = 270/3

x = 90 m

Breadth = 90m = 90 *100 = 9000 cm

Length = 2*90 = 180 m = 180 * 100 = 18000 cm

No.of bricks = Area of room/ area of one brick

= 9000 * 18000 / 20 * 12

= 675000 bricks

6 0
3 years ago
Is this triangle an acute, obtuse, or a right?
Ivanshal [37]
Its an acute or an obtuse triangle
5 0
3 years ago
Read 2 more answers
Other questions:
  • Assume that the probability of a driver getting into an accident is 6%, the average cost of an accident is $16,586.05, and the o
    7·1 answer
  • Using the given zero, find all other zeros of f(x).
    5·1 answer
  • Janine is considering buying a water filter and a reusable water bottle rather than buying bottled water. Will doing so save her
    10·1 answer
  • What is the range of the function f(x) = 3.2x for the domain {-4, -2, 0, 2, 4}?
    13·1 answer
  • Can someone give an explanation.
    15·2 answers
  • What is the cube root of 3 and 343
    14·1 answer
  • -11/6 + m equals -2 / 9​
    5·1 answer
  • PLEASE URGENT (quadratic formula with step by step) 35 points!
    15·1 answer
  • Solve for X and round to the nearest tenth
    5·1 answer
  • Write an equation for the line that passes through the given points (2,3), (3,7)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!