Answer:
Tension, T = 87.63 N
Explanation:
Given that,
Mass of the object, m = 6.9 kg
The string is acting in the upward direction, a = 2.9 m/s²
Acceleration due to gravity, g = 9.8 m/s²
As the lift is accelerating upwards, it means the net force acting on it is given by :
T = m(a+g)
= 6.9 (2.9+9.8)
= 6.9(2.7)
= 87.63 N
So, the tension in the string is 87.63 N.
The rock will continue to travel in a straight line with a constant velocity for ever... The reason is, once it leaves your hand there is no force acting on the rock, so it will just continue to move in a natural motion which is constant velocity.
Answer:
-0.01052 m/s
Explanation:
M = mass of ship = 
m = mass of shell = 1100 kg
v = velocity of shell = 550 m/s
u = recoil velocity of ship
As linear momentum is conserved

The recoil velocity of the ship taking the firing direction to be the positive direction is -0.01052 m/s
Answer:
can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary.
Answer:
1, When Jane brakes, the brakes slow the car wheels turning and the road surface exerts a backwards force on the tires, causing the car to decelerate. The pocket book tends to continue on in a straight line (Newton's first law). If she brakes hard enough that the friction between the book and the car seat is insufficient to decelerate the book as fast as the car is decelerating, the book will slide off the seat, and gravity pulls it to the floor
2.
When the diver uses his / her force to depress the springboard, the springboard pushes him back with equal force
3.Newton's Second Law (F=ma)
4. 5 N
5. 19.5 N
65kg * 0.3 m/s^2
6.0.2 N/s
10kg divided by 2N
7.-Walking then pushing the moving forward
-Dribbling
-Basketball is pushed but bounces back
Explanation: