Answer:
.
Assumptions:
- The object is dropped in a free fall.
- There's no air resistance.
- The downward acceleration due to gravity is
Explanation:
Consider the "SUVAT" equation
,
where
is the final velocity,
is the initial velocity,
is the acceleration of the object, and
is the change in the object's position.
For example, if the bottle needs to achieve a speed of
by the time it reaches the ground,
since the statement that the bottle is "dropped" implies a free fall.
.
Apply the previous equation to find the minimum height,
:
.
Replace the
value and apply the formula to find the minimum height required to reach different final speeds.
Answer:
Solon,
total mass (kg)= 100kg
height (h)= 25m
acceleration due to gravity = 9.8m/s²
so,
work done =m*g*h
= 100*9.8*25
= 24,500 joule
Answer:
Average speed of Elain = 60 km/h
Explanation:
Total Distance covered by Jack = 360km
Average Speed of Jack = 80 km/h
Time taken by Jack to complete his journey = Distance / Average speed = 360 km / 80 km/h
Time taken by Jack to complete his journey = 4.5 hours
As it is given the both Jack and Elain travelled the same amount of distance:
Total distance travelled by Elain = 360 km
It is given that Elain took 1.5 hourse more than Jack to cover the distance, so Time taken by Elain to cover the distance is = 4.5 hours + 1.5 hours = 6 hours
Average speed of Elain = Distance/ time = 360 km / 6 hours
Average speed of Elain = 60 km/h
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Answer is:
Photosynthesis transforms light energy into chemical energy. Cellular respration releasses the carbon dioxide from food into the air.
hope this helps :)