Answer:
a. 4.733 × 10⁻¹⁹ J = 2.954 eV b i. yes ii. 0.054 eV = 8.651 × 10⁻²¹ J
Explanation:
a. Find the energy of the incident photon.
The energy of the incident photon E = hc/λ where h = Planck's constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/s and λ = wavelength of light = 420 nm = 420 × 10⁻⁹ m
Substituting the values of the variables into the equation, we have
E = hc/λ
= 6.626 × 10⁻³⁴ Js × 3 × 10⁸ m/s ÷ 420 × 10⁻⁹ m
= 19.878 × 10⁻²⁶ Jm ÷ 420 × 10⁻⁹ m
= 0.04733 × 10⁻¹⁷ J
= 4.733 × 10⁻¹⁹ J
Since 1 eV = 1.602 × 10⁻¹⁹ J,
4.733 × 10⁻¹⁹ J = 4.733 × 10⁻¹⁹ J × 1 eV/1.602 × 10⁻¹⁹ J = 2.954 eV
b. i. Is this energy enough for an electron to leave the atom
Since E = 2.954 eV is greater than the work function Ф = 2.9 eV, an electron would leave the atom. So, the answer is yes.
ii. What is its maximum energy?
The maximum energy E' = E - Ф = 2.954 - 2.9
= 0.054 eV
= 0.054 × 1 eV
= 0.054 × 1.602 × 10⁻¹⁹ J
= 0.08651 × 10⁻¹⁹ J
= 8.651 × 10⁻²¹ J
Well it will probably never hit the ground try to look over your answer and go from there I hope I helped
Pe=1/2Kx^2
Half times spring constant times distance squared over time
So the question ask to determine or what are the ways in determining how many neutrons and how many protons that is present in an atom of silicon that has a mass number of 28 and an atomic number of 14, base on that, I would say that the atomic number is the number of protons in an atom while the number of neutron is computed by subtracting atomic number and the mass number.
Velocity of the car at the end of this time=128.4 m/s
Explanation:
initial velocity Vi=0
final velocity=V
acceleration= a=10.7 m/s²
time =t=12 s
using kinematic equation V= Vi + at
V=0+ 10.7 (12)
V=128.4 m/s
Thus the final velocity of the car =128.4 m/s