1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
9

Choose the items that are examples of unalienable rights.

Physics
2 answers:
Eduardwww [97]3 years ago
5 0

Answer:

the answer is D

Explanation:

bc the goverment cannot stop any religion from its service

Nana76 [90]3 years ago
3 0

The examples of unalienable rights include:

  • To live wherever you want to.
  • The government requiring safety standards in cars.
  • Not having the government listen to your phone calls.

In the declaration of Independence, the unalienable rights include life, liberty, and the pursuit of happiness.

It should be noted that one can live wherever one wants to. Also, one has the right to religion and should not be disturbed from practicing their religion. The government doesn't have the right to listen to one's phone calls too.

In conclusion, the correct options are A, C, and E.

Read related link on:

brainly.com/question/19097433

You might be interested in
Describe how thermal energy is transferred​
ikadub [295]

Answer:

Thermal energy typically flows from a warmer material to a cooler material. Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation.

Explanation:

ion know...

4 0
3 years ago
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
2 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500◦C, and 80 m/s, and the exit
Cerrena [4.2K]

Answer:

a) ΔEC=-23.4kW

b)W=12106.2kW

c)A=0.01297m^2

Explanation:

A)

The kinetic energy is defined as:

\frac{m*vel^2}{2} (vel is the velocity, to differentiate with v, specific volume).

The kinetic energy change will be: Δ (\frac{mvel^2}{2})=\frac{m*vel_2^2}{2}-\frac{m*vel_1^2}{2}

Δ (\frac{mvel^2}{2})=\frac{m}{2}*(vel_2^2-vel_1^2)

Where 1 and 2 subscripts mean initial and final state respectively.

Δ(\frac{mvel^2}{2})=\frac{12\frac{kg}{s}}{2}*(50^2-80^2)\frac{m^2}{s^2}=-23400W=-23.4kW

This amount is negative because the steam is losing that energy.

B)

Consider the energy balance, with a neglective height difference: The energy that enters to the turbine (which is in the steam) is the same that goes out (which is in the steam and in the work done).

H_1+\frac{m*vel_1^2}{2}=H_2+\frac{m*vel_2^2}{2}+W\\W=m*(h_1-h_2)+\frac{m}{2} *(vel_1^2-vel_2^2)

We already know the last quantity: \frac{m}{2} *(vel_1^2-vel_2^2)=-Δ (\frac{mvel^2}{2})=23400W

For the steam enthalpies, review the steam tables (I attach the ones that I used); according to that, h_1=h(T=500C,P=4MPa)=3445.3\frac{kJ}{kg}

The exit state is a liquid-vapor mixture, so its enthalpy is:

h_2=h_f+xh_{fg}=289.23+0.92*2366.1=2483.4\frac{kJ}{kg}

Finally, the work can be obtained:

W=12\frac{kg}{s}*(3445.3-2438.4)\frac{kJ}{kg} +23.400kW)=12106.2kW

C) For the area, consider the equation of mass flow:

m=p*vel*A where p is the density, and A the area. The density is the inverse of the specific volume, so m=\frac{vel*A}{v}

The specific volume of the inlet steam can be read also from the steam tables, and its value is: 0.08643\frac{m^3}{kg}, so:

A=\frac{m*v}{vel}=\frac{12\frac{kg}{s}*0.08643\frac{m^3}{kg}}{80\frac{m}{s}}=0.01297m^2

Download pdf
7 0
3 years ago
Why is carbon added to iron
swat32

Answer:

it transforms it into high carbon alloy that is harder and can be sharper but is also more brittle in the process.

Explanation:

7 0
3 years ago
Two airplanes leave an airport at the same time. The velocity of the first airplane is 730 m/h at a heading of 65.3 ◦ . The velo
yanalaym [24]

Answer:

Plane will 741.6959 m apart after 1.7 hour                    

Explanation:

We have given time = 1.7 hr

So if we draw the vectors of a 2d graph we see that the difference in angles is   = 102^{\circ}-65.3^{\circ}=36.7^{\circ}

Speed of first plane  = 730 m/h

So distance traveled by first plane = 730×1.7 = 1241 m

Speed of second plane = 590 m/hr

So distance traveled by second plane = 590×1.7 = 1003 m

We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.

Using the law of cosine, r^2 representing the distance between the planes, we see that:

r^2=1241^2+1003^2-2\times 1003\times 1241cos(36.7)=550112.8295

r = 741.6959 m

3 0
3 years ago
Other questions:
  • places with continental climates typically have _______ summers and ________ winters warm; cool hot; cool warm; cold hot; cold
    5·1 answer
  • A 3.00 kg object is fastened to a light spring, with the intervening cord passing over a pulley. The pulley is frictionless, and
    15·1 answer
  • A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g
    15·1 answer
  • What are muons in cosmology ​
    15·1 answer
  • Why do smaller endotherms require more energy per unit of mass than larger endotherms?
    12·1 answer
  • A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
    12·1 answer
  • “Is there a relationship between mass and gravity of a planet?” If there is a relationship, (such as- as the mass gets bigger th
    5·1 answer
  • A generator consists of a rectangular loop with turns of wire spinning at in a uniform magnetic field. The generator output is c
    7·1 answer
  • A plane flies at 400 north of East for 150 miles,then flies 200 miles at an angle of 150 west of North. What is the plane's fina
    5·1 answer
  • Which moon shows evidence of rainfall and erosion by some liquid substance?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!