1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
2 years ago
8

The number of wave cycles in a given unit of time is called the wave

Physics
1 answer:
777dan777 [17]2 years ago
4 0
It is called the wave frequency.
You might be interested in
What is the weight of a 24.52kg Television dropped on pluto(acceleration of 0.59m/s/s)?
jolli1 [7]
W=ma=24.52*0.59 = ...

6 0
3 years ago
Read 2 more answers
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
2 years ago
On a grid, what is the distance between two points located at (1, 1) and (8, 4) roughly equal to?
Diano4ka-milaya [45]
Ithink the answer is a
5 0
3 years ago
Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.05 mm high. Assume it starts from rest
mestny [16]

Height is 7.05 m and not 7.05 mm

Answer:

9.603 m/s

Explanation:

We are dealing with rotation, so velocity of centre of mass is given by;

v_cm = Rω

Since we are working with a solid cylinder, moment of inertia of the cylinder is; I = ½mR²

Since it is rolled from the top to the bottom, at the top it will have potential energy(mgh) while at the bottom it will have kinetic energy (rotational plus translational kinetic energy).

Using conservation of energy, we have:

P.E = K.E_t + K.E_r

Formula for rotational and kinetic energy here are;

K.E_t = ½mv²

K.E_r = ½Iω²

mgh = ½mv² + ½Iω²

Since we want to find translational speed(v), let's get rid of ω.

Earlier, we saw that v_cm = Rω

Thus; ω = v/R

Also, we know that I = ½mR².

Thus;

mgh = ½mv² + ½(½mR²)(v/R)²

This gives;

mgh = ½mv² + ¼mv²

Divide through by m to get;

gh = v²(½ + ¼)

gh = ¾v²

Making v the subject gives;

v = √(4gh/3)

v = √((4 × 9.81 × 7.05)/3)

v = 9.603 m/s

6 0
2 years ago
The work function for a metal surface is 4.98 eV. What is the largest wavelength of light in nm that will produce photoelectrons
bulgar [2K]

Answer:\lambda =248.99 nm

Explanation:

Given

Work function\left ( \phi \right )=4.98\approx 1.602\times 10^{-19}\times 4.98

h=6.626\times 10^{-34} J

c=2.998\times 10^8

\phi =\frac{hc}{\lambda }

\lambda =\frac{hc}{\phi }

\lambda =\frac{6.626\times 10^{-34}\times 2.998\times 10^8}{4.98\times 1.602\times 10^{-19}}

\lambda =248.99 nm

3 0
3 years ago
Other questions:
  • Suppose that the distance an aircraft travels along a runway before takeoff is given by Upper D equals (5 divided by 3 )t square
    10·1 answer
  • A gas cylinder contains argon atoms (m=40.0 u). The temperature is increased from 286 K (13°C) to 362 K (89°C) (a) What is the c
    8·1 answer
  • How far below an initial straight-line path will a projectile fall in one second
    8·1 answer
  • Ken’s prediction for December was –5°C.
    13·2 answers
  • Which is an example of a physical change
    5·1 answer
  • ¿Cuál es la diferencia entre un trauma físico y un trauma psicológico?
    12·1 answer
  • I require assistance
    10·2 answers
  • A rotating turntable (rt=4.50 m) is rotating at a constant rate. At the edge of the turntable is a mass (m = 3.00 kg) on the end
    10·1 answer
  • What type of Psychologist was B.F. Skinner?
    13·1 answer
  • According to the law of conservation of energy, which statement must be true?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!