Answer:
Explanation:
wave length of light λ = 623 x 10⁻⁹ m .
Distance of screen D = 76.5 x 10⁻² m
width of slit = d
Distance on the screen between the second order minimum and the central maximum = 2 λ D / d
1.11 x 10⁻² = (2 x 623 x 10⁻⁹ x 76.5 x 10⁻² )/ d
d = ( 2 x 623 x 10⁻⁹ x 76.5 x 10⁻²) / 1.11 x 10⁻²
= 85872.97 x 10⁻⁹
= 85.87297 x 10⁻⁶
= 85.87 μm
width a of the slit is = 85.87 μm
Answer:
The amount of each gas that can dissolve in the ocean depends on the solubility and saturation of the gas in water. Solubility refers to the amount of a dissolved gas that the water can hold under a particular set of conditions, which are usually defined as 0o C and 1 atmosphere of pressure.
Explanation:
hope this helps
Acceleration(a) is the change in velocity(Δv) over the change in time(Δt). so just divide your velocity and time.
Explanation:
Here is the complete question i guess. The jet plane travels along the vertical parabolic path defined by y = 0.4x². when it is at point A it has speed of 200 m/s, which is increasing at the rate .8 m/s^2. Determine the magnitude of acceleration of the plane when it is at point A.
→ The tangential component of acceleration is rate of increase in the speed of plane so,

→ Now we have to find out the radius of curvature at point A which is 5 Km (from the figure).
dy/dx = d(0.4x²)/dx
= 0.8x
Take the derivative again,
d²y/dx² = d(0.8x)/dx
= 0.8
at x= 5 Km
dy/dx = 0.8(5)
= 4
![p = \frac{[1+ (\frac{dy}{dx})^{2}]^{\frac{3}{2} } }{\frac{d^{2y} }{dx^{2} } }](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%7D%7B%5Cfrac%7Bd%5E%7B2y%7D%20%7D%7Bdx%5E%7B2%7D%20%7D%20%7D)
now insert the values,
![p = \frac{[1+(4)^{2}]^{\frac{3}{2} } }{0.8} = 87.62 km](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%284%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%7B0.8%7D%20%20%3D%2087.62%20km)
→ Now the normal component of acceleration is given by

= (200)²/(87.6×10³)
aₙ = 0.457 m/s²
→ Now the total acceleration is,
![a = [(a_{t})^{2} +(a_{n} )^{2} ]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%28a_%7Bt%7D%29%5E%7B2%7D%20%2B%28a_%7Bn%7D%20%29%5E%7B2%7D%20%5D%5E%7B0.5%7D)
![a = [(0.8)^{2} + (0.457)^{2}]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%280.8%29%5E%7B2%7D%20%2B%20%280.457%29%5E%7B2%7D%5D%5E%7B0.5%7D)
a = 0.921 m/s²