Answer:
A lightning conductor is made up of a sharp pointed metal (usually copper metal, as it is a very good conductor) connected directly to the ground. ... The lightning conductor is placed higher than the roof so that if lightning strikes, it strikes the conductor before it can reach the house.
Explanation:
A lightning conductor is made up of a sharp pointed metal (usually copper metal, as it is a very good conductor) connected directly to the ground. ... The lightning conductor is placed higher than the roof so that if lightning strikes, it strikes the conductor before it can reach the house.
<span>The work output of a machine divided by the work input is the "Efficiency" of the machine.
Hope this helps!</span>
Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles
After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.