Answer:
i dk how ur school works, but you'll most likely have to take that science again to get the credits u need to graduate
Explanation:
Mg(OH)₂ ⇄ Mg²⁺ + 2 OH⁻
Ksp = [Mg²⁺] [OH⁻]²
6.0 x 10⁻¹⁰ = 0.10 x [OH⁻]²
[OH⁻] = 7.746 x 10⁻⁵ M
when Mg(OH)₂ 1st precipitates, [OH⁻] = 7.746 * 10⁻⁵ M
Fe(OH)₂ <—> Fe²⁺ + 2OH⁻
Ksp = [Fe²⁺] [OH⁻]²
7.9 x 10⁻¹⁶ = [Fe²⁺] x (7.746 x 10⁻⁵)²
[Fe²⁺] = 1.32 x 10⁻⁷ M
Answer: 1.32 x 10⁻⁷ M
Answer:
3.8 M
Explanation:
Volume of acid used VA= 57.0 - 37.5 = 19.5 ml
Volume of base used VB= 67.8 - 45.0 = 22.8 ml
Equation of the reaction
2HNO3(aq) + Ca(OH)2(aq) --------> Ca(NO3)2(aq) + 2H2O(l)
Number of moles of acid NA= 2
Number of moles of base NB= 1
Concentration of acid CA= ???
Concentration of base CB= 1.63 M
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
CA= CBVBNA/VANB
CA= 1.63 × 22.8 × 2/ 19.5 × 1
CA= 3.8 M
HENCE THE MOLARITY OF THE ACID IS 3.8 M.
I have attached an image of the IR spectrum required to answer this question.
Looking at the IR, we can look for any clear major stretches that stand out. Immediately, looking at the spectrum, we see an intense stretch at around 1700 cm⁻¹. A stretch at this frequency is due to the C=O stretch of a carbonyl. Therefore, we know our answer must contain a carbonyl, so it could still be a ketone, aldehyde, carboxylic, ester, acid chloride or amide. However, if we look in the 3000 range of the spectrum, we see some unique pair of peaks at 2900 and 2700. These two peaks are characteristic of the sp² C-H stretch of the aldehyde.
Therefore, we can already conclude that this spectrum is due to an aldehyde based on the carbonyl stretch and the accompanying sp² C-H stretch.