One way of knowing that oxygen was the gas removed from the volume of air and not another is to know what the volume of air is made of first. When the composition of the volume of air is already identified, then next would be the process of separating these elements from each other and as to which is to be separated first. This would usually lead to knowing their masses, their boiling and freezing points, the temperatures at which they condense, and so on. This is to identify their differences to each other and use those differences to successfully separate those elements to each other.
Notice how the K and Ag are both being swapped around.
Single Replacement:
A+BX → B+AX
Double Replacement:
AX+BY → BX + AY
Continental drift is the movement of Earth’s continents over long periods of time. An evidence for this is that some continents look like puzzle pieces that can fit together, such as South America and Africa. Another evidence is that fossils of the same type have been found in different continents, far apart - suggesting that the two continents once were joined. Another evidence is that identical rocks were found at both sides of the Atlantic Ocean by Alfred Wegener, the main developer of the continents drift theory.
Withdrawal is the answer to your question.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K