Assuming that the solution is simply an aqueous solution
so that it is purely made of NaClO4 (the solute) and water (the solvent), then
I believe the dissolved species would only be the ions of NaClO4, these are:
Na+
ClO4 -
Answer:
The volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L
Explanation:
Given data:
Number of moles of HF = 6.62×10⁻³ mol
Volume of HF in litter at STP = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Standard temperature = 273 K
Standard pressure = 1 atm
Now we will put the values in formula.
1 atm × V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K
V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K / 1 atm
V = 148.38×10⁻³ L
Thus, the volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L.
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.