The three major types of faults are Normal, Reverse and Strike-slip faults.
Answer: FALSE
Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=
Potassium ......................
The isotope that is more abundant, given the data is isotope Li7
<h3>Assumption</h3>
- Let Li6 be isotope A
- Let Li7 be isotope B
<h3>How to determine whiche isotope is more abundant</h3>
- Molar mass of isotope A (Li6) = 6.02 u
- Molar mass of isotope B (Li7) = 7.02 u
- Atomic mass of lithium = 6.94 u
- Abundance of A = A%
- Abundance of B = (100 - A)%
Atomic mass = [(mass of A × A%) / 100] + [(mass of B × B%) / 100]
6.94 = [(6.02 × A%) / 100] + [(7.02 × (100 - A)) / 100]
6.94 = [6.02A% / 100] + [702 - 7.02A% / 100]
6.94 = [6.02A% + 702 - 7.02A%] / 100
Cross multiply
6.02A% + 702 - 7.02A% = 6.94 × 100
6.02A% + 702 - 7.02A% = 694
Collect like terms
6.02A% - 7.02A% = 694 - 702
-A% = -8
A% = 8%
Thus,
Abundance of B = (100 - A)%
Abundance of B = (100 - 8)%
Abundance of B = 92%
SUMMARY
- Abundance of A (Li6) = 8%
- Abundance of B (Li7) = 92%
From the above, isotope Li7 is more abundant.
Learn more about isotope:
brainly.com/question/24311846
#SPJ1