1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
12

Scientists in 1.legal services 2.research and development 3.marketing 4.corporate management

Chemistry
1 answer:
Maslowich3 years ago
4 0

2. research and development

You might be interested in
What is 0.0000000652 in scientific notation?
Alex787 [66]

Answer:

it denotes 6.52× 10⁸ in scientific notation

8 0
3 years ago
Read 2 more answers
What volume of 0.500 M zinc nitrate contains 2.94 g of zinc nitrate?
krek1111 [17]
24518 is the answer to your queston
7 0
4 years ago
Solve to me this question
Luda [366]
According to my calculations the correct Answer is C. +694. The answers A B and D Are incorrect. It cannot be A because I said it also cannot be B because C=H. The answer would not be D because balls in your jaws = +1192 And the answer will be CORRECT ANSWER C=+694
8 0
2 years ago
What is carbon role in chemical bonding with hydrogen
yKpoI14uk [10]

Answer: covalent bonds

Explanation:

7 0
3 years ago
Lab reaction rate project for chemistry edge2020
guajiro [1.7K]

Answer:

What Affects Reaction Rate?

The purpose of this lab was to see how temperature and particle size affects reaction rate. The first hypothesis is if you increase the temperature of a reaction, then the reaction rate will increase because particles experience more collisions at higher temperatures.The second hypothesis is if you decrease the particle size of a reactant, then the reaction rate will increase because more of the reactants’ molecules will contact each other. The independent variables are particle size and temperature. The dependent variable is reaction rate.

Materials

250 mL graduated cylinder

Thermometer

Water

Timer

Four 250 mL beakers

Seven 1,000 mg effervescent tablets

Two pieces of filter paper

600 mL beaker

Ice

Hot plate

Procedure

Step 1:Gather Materials

Variation of Temperature

Step 2:Measure the Reaction Rate at ≈ 20°C (Room Temperature)

a) Using a graduated cylinder, fill a 250 mL beaker with 200 mL of water.

b) Measure the temperature of the water and record it in the correct row of Table A.

c) Reset the timer. Start the timer as you place a full tablet into the beaker.

d) Record the reaction time on the Data Sheet in the correct row of Table A.

e) Compute the reaction rate to the nearest mg/L/sec. Record it in the last column of Table A. Measure the Reaction Rate at ≈ 40°C

Step 3:Repeat Step 2, heating the water to approximately 40°C using a hot plate during sub-step a. Measure the Reaction Rate at ≈ 65°C

Step 4:Repeat Step 2, heating the water to approximately 65°C using a hot plate during sub-step a. Measure the Reaction Rate at ≈ 5°C

Step 5:Repeat Step 2, chilling the water to approximately 5°C inside an ice bath during sub-step a. (To create an ice bath, place 100 mL of ice and 100 mL of water in a 600 mL beaker of ice water and wait until the temperature reaches approximately 5°C. To save time, you may wish to set up the ice bath, using an additional 250 mL beaker, while working on Step 4.)

Variation of Particle Size

Step 6:Measure the Reaction Rate for a Full Tablet

a) Using a graduated cylinder, fill a 250 mL beaker with 200 mL of water.

b) Reset the timer. Start the timer as you place the tablet in the beaker.

c) Record the reaction time on the Data Sheet in the appropriate row of Table B.

d) Compute the reaction rate to the nearest mg/L/sec. Record it in the last column of Table B.

Step 7:Measure the Reaction Rate for a Partially Broken Tablet

Repeat Step 6, but this time break the tablet into eight small pieces on a piece of filter paper. Make sure to place all of the pieces into the beaker at the same time.

Step 8:Measure the Reaction Rate for a Crushed Tablet

Repeat Step 6, but this time crush the tablet into tiny pieces on a piece of filter paper. Make sure to place all of the pieces into the beaker at the same time.

Step 9: Dispose of all samples according to your teacher’s directions.

Measured Reaction Temperature (°C)

Mass of Tablet (mg)

Volume of Water (L)

Reaction Time (s)

Reaction Rate (mg/L/s)

≈20°C

24

1,000

0.2

34.2

146.2

≈40°C

40

1,000

0.2

26.3

190.1

≈65°C

65

1,000

0.2

14.2

352.1

≈5°C

3

1,000

0.2

138.5

36.1

Relative Particle Size (Small, Medium, Large)

Mass of Tablet (mg)

Volume of Water (L)

Reaction Time (s)

Reaction Rate (mg/L/s)

Full Tablet

large

1,000

0.2

34.5

144.9

Broken Tablet

medium

1,000

0.2

28.9

173.0

Crushed Tablet

small

1,000

0.2

23.1

216.5

The data in the first table show that as the temperature increases the reaction time decreases and in turn the reaction rate increases. The data supported the hypothesis that as temperature increases reaction rate will also increase. The second table shows that as the particle size decreases the reaction time increases because there is more surface area when the particles are smaller. The data in the second table supported the second hypothesis that as particle size decreases the reaction rate will increase because there will be more contact in the molecules. Possible source of error would be an error in stopping the timer in time or chips in the tablets. To improve this lab it could be done with different types of reactions or different temperature or different particle sizes.

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following molecules is nonpolar?<br> O A. CO2<br> O B. NO<br> ос. со<br> O D. SO2
    6·1 answer
  • A physician may need to increase a patient's prescribed dosage if he or she has developed what?
    11·1 answer
  • How many H2O molecules are contained in 0.0016 moles of the hydrate Na2B4O7.10H2O?
    14·2 answers
  • When salt is placed on ice the ice melts explain why?​
    10·2 answers
  • What kind of chemical reaction is below?<br> AgNO3 + NaCI -&gt; AgCI + NaNO3
    7·2 answers
  • Which term describes a substance that increases the concentration of hydroxide (OH-) ions in solution? *
    7·2 answers
  • PLZ HELP IM GIVING 50 FRICKING POINTS. NO WRONG ANSWERS PLZ
    8·1 answer
  • What are adipoyl chloride used for or uses?
    15·1 answer
  • why is it harder to remove an electron from fluorine than from carbon? to put it another way, why are the outermost electrons of
    15·1 answer
  • I need help with this pls i don’t understand it
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!