D. this is the correct answer because the question is showing a comparison of sizes rather than the actual sizes which eliminates B. A and C have no relevance.
The sun gives off light energy to help plants photosynthesize and make food
0.5
Explanation:
Given parameters:
Mass of Ca²⁺ = 10g
unknown:
Equivalent weight = ?
Solution:
Equivalent weight that is the amount of electrons which a substance gains or loses per mole.
Ca²⁺ has +3 charge
It lost 2e⁻;
therefore;
In 1 mole of Ca²⁺, we have 2 equivalent weight
1 mol Ca²⁺ = 2eq. wts.
1 mol Ca x (40 g / 1 mol ) x (1 mol / 2 eq.wts.) = 20.0 g = 1 eq.wt.
Therefore;
10.0 g Ca²⁺ x (1 eq.wt. / 20.0 g) = 0.5 eq.wts.
learn more:
Molar mass brainly.com/question/2861244
#learnwithBrainly
Answer:
a) K = [ CO2(g) ]
⇒ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Explanation:
a) CaCO3(s) ↔ CaO(s) + CO2(g)
⇒ K = [ CO2(g) ]
∴ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) H2(g) + F2(g) ↔ 2 HF(g)
⇒ K = [ HF(g) ] ² / [ F2(g) ] * [ H2(g) ]
⇒ Kp = PHF² / PF2 * PH2
for ideal gas:
PV = RTn
⇒ P = n/V RT = [ ] RT
⇒ Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same.
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.