Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
Answer:
Valency is the measure of the combining power of an element
Question:
Zinc metal is added to hydrochloric acid to generate hydrogen gas and is collected over a liquid whose vapor pressure is the same as pure water at 20.0 degrees C (18 torr). The volume of the mixture is 1.7 L and its total pressure is 0.987 atm. Determine the number of moles of hydrogen gas present in the sample.
A. 0.272 mol
B. 0.04 mol
C. 0.997 mol
D. 0.139 mol
E. 0.0681 mol
Answer:
The correct option is;
E. 0.0681 mol
Explanation:
The equation for the reaction is
Zn + HCl = H₂ + ZnCl₂
Vapor pressure of the liquid = 18 torr = 2399.803 Pa
Total pressure of gas mixture H₂ + liquid vapor = 0.987 atm
= 100007.775 Pa
Therefore, by Avogadro's law, pressure of the hydrogen gas is given by the following equation
Pressure of H₂ = 100007.775 Pa - 2399.803 Pa = 97607.972 Pa
Volume of H₂ = 1.7 L = 0.0017 m³
Temperature = 20 °C = 293.15 K
Therefore,

Therefore, the number of moles of hydrogen gas present in the sample is n ≈ 0.0681 moles.
Answer:
H
Explanation:
Example,
HCl for hydrochloric acid
H2SO4 for sulphuric acid
HNO3 for nitric (v) acid
Answer:
D would be the best answer
Explanation: