Answer:
1:16
Explanation:
The ground state of an electron on the planet is n = 4 compared the ground state of an electron at n =1. For a hydrogen atom, the electron energy level is given as:


Hence the ratio of their ionization energies is 1:16
The statement that best describes a solution is the option C: a mixture having a uniform composition where the components cannot be seen separately and all components are in the same state.<span> That is exactly what a solution is: a homogeneous mixture, the composition is uniform, but it can vary from one solution to other. The components must be in the safe phase, but it can be any phase: solid, liquid or gas. The most classical and clear example is the salt solution, NaCl. When you dissolve a spoon of NaCl in water you will not be able to distinguish nor separating the solute from the solvent, and the mixture will have uniform composition.</span>
Answer:
pH value of a solution depends on the concentration of hydrogen ions
(pH = -log[H+(aq)].
Hydrochloric acid is a strong acid, while ethanoic acid is a weak acid. Strong acids ionize completely in water (to give ions which includes H+(aq)), while weak acids only ionize partially in water.
Therefore, even if both hydrochloric acid and ethanoic acid are monobasic acids (each molecule can ionize completely to give 1 hydrogen ion), since hydrochloric acid ionizes completely in water and ethanoic acid does not ionize completely, the concentration of hydrogen ions in hydrochloric acid is higher than that of ethanoic acid, leading to a lower pH value for hydrochloric acid, while higher for ethanoic acid.
Mole is equal to 6.02*10^23 atoms, and you have 7.00*10^23 atoms
<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L