In an ionic bond :
=》B. one atom accepts electrons from another.
in this bond an atom ( <em><u>metallic</u></em> ) loses its electrons and another atom ( <em><u>non- metallic</u></em> ) accepts the electrons, and since there isn't the equal positive and negative charges in the atoms, they forms <em><u>cations</u></em> ( +ve charge ) and <em><u>anions </u></em>( -ve charge )
and get stacked or <em><u>attracted</u></em> to each other by strong <em><u>electrostatic force</u></em>.
Carbs!! (or carbohydrates)
It will only be valuable if proved correct so it's D
Answer:
37.1 calories.
Approximately, 37.1 = 40 calories.
Explanation:
So, without mincing words let's dive straight into the solution to the question above.
We are given the following parameters which are going to help in solving this particular Question.
The mass of broccoli = 86g of broccoli, mass of carbohydrates present = 6g of carbohydrates, the mass of protein present = 2.6g of protein and the mass of fat present = 0.3g of fat.
Therefore, the nutritional energy content (in Calories) = (6 × 4) + (2.6 × 4) + (0.3 × 9) = 10.4 + 24 + 2.7 = 37.1
Hence, the nutritional energy content (in Calories) = 37.1 calories.
Approximately, 37.1 = 40 calories.
Answer:
2.01V ( To three significant digits)
Explanation:
First we show the standard reduction potentials of Cu2+(aq)/Cu(s) system and Al3+(aq)/Al(s) system. We can clearly see from the balanced redox reaction equation that aluminium is the anode and was the oxidized specie while copper is the cathode and was the reduced specie. This observation is necessary when substituting values of concentration into the Nernst equation.
The next thing to do is to obtain the standard cell potential as shown in the image attached and subsequently substitute values of concentration and standard cell potential into the Nernst equation as shown. This gives the cell potential under the given conditions.