If the electron goes a distance d, the amount of work done on it by the magnetic field is zero.
Because magnetic force acts perpendicular to the direction of motion, it has no effect on any moving charge particle. As a result, speed won't change.
<h3>What is Magnetic field?</h3>
- The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field.
- A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.
- A compass, a motor, the magnets that hold items in refrigerators, railroad tracks, and modern roller coasters are examples of devices that use magnetic force.
- A magnetic field is created by all moving charges, and any charges that move across its regions are subject to a force.
Learn more about Magnetic field here:
brainly.com/question/14848188
#SPJ4
Answer:
You build up kinetic energy and you get shocked this happens because static has built up from the socks and the rug. This also happens when you rub a balloon on your head or shuffle across a trampoline with socks on.
Explanation:
brainliest plz
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
Answer:
Magnitude of the vector is
and the direction is 
Explanation:
Magnitude of first vector = 
Angle = 
Magnitude of second vector = 
Angle = 
x component of first vector

y component of first vector

x component of second vector

y component of first vector

Adding the magnitudes


Magnitude of the sum of the vectors would be

The direction would be

The magnitude of the vector is
and the direction is 
Answer:
9N
Explanation:
net force = right force - left force
net force = 22 - 13=9N