Beaker would be most appropriate for measuring the approximate volume of a liquid.
<h3>Answer:</h3>
- 24.5 km/h
- 4 17/27 m/s
- 11/3 m/s²
<h3>Explanation:</h3>
1. The average speed is the ratio of total distance to total time:
... speed = distance/time = (92 km +55 km)/(3 h +3h) = (147 km)/(6 h)
... = 24.5 km/h
2. speed = distance/time = (125 m)/(27 s) = 4 17/27 m/s
3. a = ∆v/∆t = (15 m/s -4 m/s)/(3 s) = 11/3 m/s²
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
The most common of these is carbon 12, 13, 14. All of these isotopes have the same atomic number but different mass numbers. Carbon has the atomic number of 6 which means that all isotopes have the same proton number. However, the number of neutrons is different, thus giving different mass numbers.
First of all, don't forget that the sun is 400 times farther from us than the moon is. That fact alone tells us that anything on the earth is attracted to each kilogram of the moon with a force that's 160,000 times stronger than the force that attracts it to each kilogram of the Sun.
But more to your point ... The tides ARE greatly influenced by the sun. That's why tides are considerably higher at New Moon, when the sun and moon are both pulling in the same direction.