Answer:
176.58Watts
Explanation:
Power= work done /time
Where mass(m)=60kg
Height (h) =3m
Time(s)=10s
Force of gravity = 9.81m/s^2
Power=mgh/t
Power= (60kg) * (9.81m/s^2) * (3m)/10s
Power= 176.58Watts
Answer: 
Explanation:
Given
mass of ball m=10 kg
It is placed at a height of 150 m
It is dropped from the height and allowed to free fall for 40 m
Velocity acquired by the ball during this fall is given by 
Insert u=0, a=g

Kinetic energy at this instant

If net external force acting on the system is zero, momentum is conserved. That means, initial and final momentum are same → total momentum of the system is zero.
Answer:
The force required to move the cart is divided by three or 33.33 N.
Explanation:
Answer:
ω = 3.1 rad/s
θ = 36° from vertical
Explanation:
I will ASSUME that the bob and string is acting as a pendulum.
Please understand that the string will break when the bob is at the lowest point of the swing where the vectors of gravity and centripetal acceleration align. It will NOT break at the angle of maximum inclination measured from vertical. This angle is only a component of the maximum potential energy that gets converted to maximum kinetic energy at the lowest point of the swing.
At the bottom of the swing, the string must support the weight of the bob plus supply the required centripetal acceleration.
F = mg + mω²R
F/m = g + ω²R
F/m - g = ω²R
ω = √((F/m - g)/R)
ω = √((3/0.220 - 9.8)/0.40)
ω = 3.09691...
ω = 3.1 rad/s
Potential energy will convert to kinetic energy
mgh = ½mv²
h = v²/2g
R - Rcosθ = v²/2g
R(1 - cosθ) = v²/2g
1 - cosθ = v²/2gR
cosθ = 1 - v²/2gR
cosθ = 1 - (Rω)²/2gR
cosθ = 1 - Rω²/2g
cosθ = 1 - 0.40(3.1²)/(2(9.8))
cosθ = 0.804267
θ = 36.46045...
θ = 36°