<span>The speed of sound needs to be given, in the proper form. This will allow for the proper conversion (namely, a multiplication by the Mach rate) to find the actual speed that the aircraft is traveling, compared to how fast sound travels.</span>
Answer D
In alkali earth metals reacrivity increases from top to bottom (opposite of b)
This is because as you go down, the electron shells increase by 1 shell. The farther away a shell is from the nucleus, the higher its tendency to react.
D is true because the more reactive an alkali metal is, the more vigorous the reaction will be with water.
So I'm a junior. I am currently taking AP Calc BC and AP Physics B.
As of now, I'm not sure if I should take AP Probability and Statistics or Differential Equations/Calc III next year. Also, I'm debating between taking AP Physics C or AP Chemistry.
Which ones do you think would look better on a transcript? I heard that Diffeq/CalcIII is harder than AP ProbStat, but ProbStat is an AP course which will be weighted heavier. Also, should I take Physics C since i've taken Physics B this year already?
Answer:
450N
Explanation:
Given data
Mass m= 75kg
Acceleration= 6m/s^2
From the Newtons first law, F=ma
substitute
F=75*6
F= 450N
Hence the force is 450N
Answer:
Please see answer in explanation
Explanation:
1. Since each molecule has three kinetic degrees of freedom (can move in three independent directions), the gas must have 3N DoFs.
2. Each molecule has the three kinetic degrees of freedom the monotonic atom has moving without rotating but it can also spin. There are three axes for it to spin around so we would expect three rotational degrees of freedom, but as were as above, the one about the diatomic molecule's axis doesn't count because of quantum. So we have two rotational DoFs and three kinetic, for a total of 5 per molecules. So the gas will have 5N DoFs.
3.When a spring vibrates it has two DoFs, its KE and its PE, so adding 1 vibration adds 2 DoFs per molecule, giving 7 per molecule and giving thegas 7N DoFs.