Well its C, cant show you the work its in my head sorry.
Answer : The cell potential for this cell 0.434 V
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^o_{[Cu^{2+}/Cu]}=0.34V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.34V)
![E^o_{[Ag^{+}/Ag]}=0.80V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D0.80V)
![E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5Eo%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the concentration of cell potential for this cell.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCu%5E%7B2%2B%7D%5D%5BAg%5D%5E2%7D%7B%5BCu%5D%5BAg%5E%2B%5D%5E2%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this cell 0.434 V
Answer: C) 200 N
Explanation:
The force
is defined as:

Where:
is the mass of the object
is the acceleration
Then:

Finally:

Hence, the correct option is C.
Answer: Charles's law
Explanation:
Charles's law is one of the gas laws, and it explains the effect of temperature changes on the volume of a given mass of gas at a constant pressure. Usually, the volume of a gas decreases as the temperature decreases and increases as the temperature also increases.
Mathematically, Charles's law can be expressed as:
V ∝ T
V = kT or (V/T) = k
where v is volume, T is temperature in Kelvin, and a k is a constant.
The frequency of a wave is the number of waves that passes through a point in a certain time. The less waves that pass in a period of time the lower the frequency of the wave. The more waves that pass in a period of time the higher the frequency of the wave. When measuring wave length the time period used is usually one second.