Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.
Answer:
hmm if it were up to me i would say gravity potential energy and sorry I don't really have a third one hope this helps though.
Answer:
80.386 degrees
Explanation:
We use the cosine equation here (which is the adjacent side of the unknown angle divided by the hypotenuse
The adjacent side = 699ft
The hypotenuse = 1034ft
using cos∅ = Adjacent/hypotenuse
where ∅ is the unknown angle
cos ∅ = 699/1034 = 0.167
∅ = arccos 0.167 = 80.368°
As easy as one can imagine