By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Answer:
Moving a unit "positive" test charge from A to B will result in a reduction in potential
V = K Q / R potential at a point
V2 - V1 = K Q (1 / .4 - 1 / .15) = = k Q (.15 - .4) / .06 = -4.17 K Q
V2 - V1 = -4.17 * 9 & 10E9 * 6.25 E-8
V2 - V1 = -4.17 * 562.5 J/C
V = - 2346 Volts
Answer:
0.3858 Nm
Explanation:
The torque of the couple is the dot product of the force vector and the couple vector from 1 end of the ruler to the center. This equals to the product of their magnitude times the cosine() of the angle made by their direction:
