Strong acids are those that dissociate completely into their ions. So the dissociation equation for a strong acid is:
HA → H⁺ + A⁻
It is visible from the equation that the number of moles of hydrogen ions released is equivalent to the number of moles of acid. For a given volume,
[HA] → [H]⁺ + [A]⁻
Thus, the assumption is logical and fairly accurate
Answer:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.025M)
Explanation:
Hello.
In this case, for this equilibrium problem, we first realize that at the beginning there is just HI, it means that the reaction should be rewritten as follows:

Whereas the law of mass action (equilibrium expression) is:
![Kc=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
That in terms of initial concentrations and reaction extent or change
turns out:
![Kc=\frac{x*x}{([HI]_0-2x)^2}\\\\54.3=\frac{x^2}{(0.391M-2x)^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7Bx%2Ax%7D%7B%28%5BHI%5D_0-2x%29%5E2%7D%5C%5C%5C%5C54.3%3D%5Cfrac%7Bx%5E2%7D%7B%280.391M-2x%29%5E2%7D)
And the solution via solver or quadratic equation is:

Whereas the correct answer is 0.183 M since the other value yield a negative concentration of HI at equilibrium (0.391-2*0.210=-0.029M).This, the equilibrium concentrations are:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.391M-2*0.183M=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.391M-2%2A0.183M%3D0.025M)
Regards.
Answer:
A. how cholesterol works in the body.
Explanation:
If we know the precise structure of a molecule (by X-ray crystallography), we can understand more about how it interacts with cells, proteins, and other molecules. It can also tell us what reactions it might take part in.
Therefore, we can learn more about how it works in the body and what activities it takes part in in the cells of the body.
You should use Avogadro’s number for the conversion, because Avogadro’s Law states that there are 6.02 x 10^23 atoms per 1 mol of that substance.