Answer:
5.83 mol.
Explanation:
- From the balanced reaction:
<em>2Al + 3Ag₂S → 6Ag + Al₂S₃,</em>
It is clear that 2 mol of Al react with 3 mol of Ag₂S to produce 1 mol of Ag and 1 mol of Al₂S₃.
Al reacts with Ag₂S with (2: 3) molar ratio.
<em>So, 2.27 mol of Al reacts completely with 3.4 mol of Ag₂S with (2: 3) molar ratio.</em>
<em />
- The limiting reactant is Ag₂S.
- The excess "left over" reactant is Al.
The reamining moles of excess reactant "Al" = 8.1 mol - 2.27 mol = 5.83 mol.
Answer:
39.7 %
Explanation:
magnesium + oxygen ⟶ magnesium oxide
10.57 g 6.96 g 17.53 g
According to the <em>Law of Conservation of Mass</em>, the mass of the product must equal the total mass of the reactants.
Mass of MgO = 10.57 + 6.96
Mass of MgO = 17.53 g
The formula for mass percent is
% by mass = Mass of component/Total mass × 100 %
In this case,
% O = mass of O/mass of MgO × 100 %
Mass of O = 6.96 g
Mass of MgO = 17.53 g
% O = 6.96/17.53 × 100
% O = 0.3970 × 100
% O = 39.7 %
Answer:
Explanation:
Alkaline are great for long-term use in a device, such as in a digital camera or game console remote. Carbon zinc batteries are ideal in a situation where one needs to power multiple devices for one occasion, such as when buying many toys during the Christmas season to be used for a few days.
If the units for gases were the same as the units for numbers would be too small to be convenient.
For example, the density of iron is 7.87 g/cm³.
Using the same units, the density of hydrogen is 0.000 0899 g/cm³.
It is much more convenient to express the density in numbers that are easier to visualize: 0.0899 g/L, and that is still a small number.