The law of conservation of momentum basically means that energy is always conserved and never lost when a collision happens.
Using the formula p=mv ...
Player A would have a momentum of 220 N•S
Player B would have a momentum of 0 because he is not moving
After the collision, the total momentum is still 220 N•S because energy is never lost, but now player A is at 0 and player B took his momentum. Think about it this way, if you bumped into something that wasn’t moving, it would fall and you most likely wouldn’t keep moving.
Elastic collisions are where the objects bounce each other and in inelastic collisions they stick together. I don’t watch much football but if you do this should make sense.
If the players fall down together (they tackle each other and fall? I think) it should be inelastic.
Sorry if this was long and confusing but I really hope this helps! ☺️
Answer:
(a) 7.1 m /sec
(b) 339.9 N/m
(c) 19.91 cm
Explanation:
We have given mass m = 267 gram = 0.267 kg
Time period T = 0.176 sec
Total energy of the oscillating system = 6.74 J
We know that energy is given by
(a) 


(b) Now 
We know that 


(c) We know that energy is given by



The answer is A. Hope this helps!!!
Answer:
0
Explanation:
Displacement is a vector from initial to final point. Because initial and final point are the same, so displacement is 0.
Here given that x is inversely depends of y
so as we increase the value of y so due to inverse dependency it will decrease the value of x
So here we can also say that when x inversely depends on y
so the product of x and y will remain constant here
so here the graph should be like this that if we increase the quantity on x axis then it will decrease the other quantity on y axis
<u><em>So here best appropriate graph must be option A</em></u>