In a transverse wave:
- Oscillations are perpendicular to the direction of energy travelling
- Frequency is the amount of complete waves passing a certain point in one second (measured in hertz, Hz)
- Wavelength is the distance from any point on one wave to the same point on the following wave
- The amplitude is the maximum displacement of the particles from their average position (and be measured from the horizontal mid-point of the wave to either the peak or trough)
There isn't always a defined relationship between these features. However, frequency × wavelength = velocity of the wave.
Answer:
Explanation:
False --> A cylindrical capacitor is essentially a parallel plate capacitor rolled into a tube. This is because a cylindrical capacitor comprises two cylinders.
False --> The dielectric constant indicates the distance by which the two plates of a capacitor are separated.
True --> The charge on a capacitor increases quickly at first, then much more slowly as the capacitor charges. This is because the charge on the capacitor increases exponentially.
False --> The voltage across a capacitor in an RC circuit increases linearly during charging. This is because the voltage increases exponentially.
True --> One of the principal purposes of a capacitor is to store electric potential energy.
True --> A capacitor charges rapidly when connected to an RC circuit with a battery. This is because a cylindrical capacitor is basically a parallel plate capacitor rolled into a tube.
Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
<span>It is important to use a fixed common reference point on your work peace or drawing to avoid cumulative error</span>
Question: If a car is moving on a road at 70 km/hr going due north, and then changes direction and starts traveling north-east staying at 70 km/hr, what happens to its speed and velocity?
Answer: the velocity of the car changes, but the speed stays the same.
Explanation: basically velocity is speed with a direction and speed is the absolute value or magnitude of velocity.
question answered by
(jacemorris04)