Answer:the pressure depends on gas and it will be half as much underwater
Explanation:
Water pressure increases with the depth of the water. This is because the weight of the column of water above the object increases. But a large, shallow pond may have more water in it than a small, deep pond.
This is due to an increase in hydrostatic pressure, the force per unit area exerted by a liquid on an object. The deeper you go under the sea, the greater the pressure of the water pushing down on you. For every 33 feet (10.06 meters) you go down, the pressure increases by one atmosphere .
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
3.98V
Explanation:
Given
Pontential difference V as 3v
Energy delivered is 30%,
Recall that Enery E=1/2cv^2 from this E=V^2(since Current C is not provided we can assume a value 2)
So E=V^2
E=3^2=9
At full charge E=9,30%of 9,0.3*9=2.7 energy in capacitor is 9-2.7=6.3
But E=V^2
✓E=V
✓6.3=3.98V
Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3
..........................................................