A tuning fork's job is to establish a single note that everybody can tune to.
Most tuning forks are made to vibrate at 440 Hz, a tone known to musicians as "concert A." To tune a piano, you would start by playing the piano's "A" key while ringing an "A" tuning fork. If the piano is out of tune, you'll hear a distinct warble between the note you're playing and the note played by the tuning fork; the further apart the warbles, the more out-of-tune the piano. By either tightening or loosening the piano's strings, you reduce the warble until it's in line with the tuning fork. Once the "A" key is in tune, you would then adjust all of the instrument's 87 other keys to match. The method is much the same for most other instruments. Whether you're tuning a clarinet or guitar, simply play a concert A and adjust your instrument accordingly
Explanation:
It can be a bit tricky to hold a tuning fork while manipulating an instrument, which is why some musicians decide to clench the base of a ringing tuning fork in their teeth. This has the unique effect of transmitting sound through your bones, allowing your brain to "hear" the tone through your jaw. According to some urban legends, touching your teeth with a vibrating tuning fork is enough to make them explode. It's a myth, obviously, but if you have a cavity or a chipped tooth, you'll quickly find this method to be unbelievably painful.
Luckily, you can also buy tuning forks that come mounted on top of a resonator, a hollow wooden box designed to amplify a tuning fork's vibrations. In 1860, a pair of German inventors even devised a battery-powered tuning fork that musicians didn't need to ring again and again
Answer: When you cannot stop safely at a yellow traffic light before entering an intersection, enter the intersection carefully and continue across.
Explanation: To find the correct answer, we need to know more about the traffic signal rules.
<h3>What is the traffic signal rules?</h3>
- Red light- Indicator for the motorists to stop.
- Green-Signal for safety and word GO.
- Yellow- This signal let you know that the red signal is about to be displayed.
- when it's turned on, you can start slowing down to come to a stop in anticipation of red light.
- when we cannot stop safely at a yellow traffic light before entering an intersection, enter the intersection carefully and continue across.
Thus, we can conclude that, the option C is correct.
Learn more about the traffic signal rules here:
brainly.com/question/28044804
#SPJ4
In scientific terms, ultrasound is a sound pressure, cyclic in nature, that has a greater frequency than the limit at the top of human hearing capabilities. What this means is that an ultrasonic sound can’t be heard by the human ear because their frequency is too high for our ears to pick up. In healthy young adults, this upper hearing capability is an average of 20 kilohertz. Ultrasound has many applications in several fields. Perhaps the best known application for ultrasound is sonography. This is where medical staff use the high pitched noise to produce a picture of a fetus while in the mother’s womb. Another use however, doesn’t directly concern humans at all. Bats use the high pitched noises to see in the dark and get an accurate reading on their preys internal structure. A popular belief is that an ultrasonic sound has the ability to turn the locking mechanism in a door lock, as demonstrated on some spy movies. On the opposite side of this are infrasonic sounds. These are noises with a frequency less than the lowest level of human hearing capabilities is 20 hertz. It is possible for humans to perceive infrasonic sounds, but only if the air pressure is sufficient. Although the war is the main tool for hearing these low sounds, it is possible for other parts of the body to “feel them”. Infrasound can be used to send signals in the army to special machines that can pick them up. These can be used to transmit vital data. Animals are able to pick up some low infrasonic noises which warn them of natural disasters before they happen, generally earthquakes and tsunamis.
I hope some of this information I gave you can help you. I came up with everything myself to help you.
Answer:
Explanation:
Use the one-dimensional equation
which says that the final velocity of an object is equal to the object's initial velocity plus its acceleration times time. We are looking for time. That means the equation looks like this:
0 = 30 + (-4)t and
-30 = -4t so
t = 7.5 sec