Answer: 71.93 *10^3 N/C
Explanation: In order to calculate the electric field from long wire we have to use the Gaussian law, this is:
∫E*dr=Q inside/εo Q inside is given by: λ*L then,
E*2*π*r*L=λ*L/εo
E= λ/(2*π*εo*r)= 4* 10^-6/(2*3.1415*8.85*10^-12*2 )= 71.93 * 10^3 N/C
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules
A because of the resistors are four in this options first option is multiplied by 4
Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.
Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph
Speed of the boat by when it will hit the dock is 40.33 mph
The distance at which the boat will have to start decelerating is 312.5 m
The answer would be Conduction