1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
3 years ago
15

ASAP PLEASE HELP WITH THIS 1.Mike and tim are outside with a wagon time weight 311 Newtons(70lbs) and gets in the the wagon and

mike,who weights 50 Newtons(50lbs),pulls it. As mike pulls it, he accelerates until reaching a constant speed. After stopping, Mike and Tim switch places . Tim now pulls mike in the wagon, accelerating from stop to a constant velocity. Now, Tim may be bigger then mike but mike was riding in the wagon when it had the greatest acceleration during start up? Why? Use Newtons second law of motion to explain.
2. Now Sare comes along, and she is the exact same size as Mike. However, she is even stronger then mike When she pulls mike in the wagon, she pulls with a greater force than when mike pulls her. Now who is in the wagon when it has the greatest acceleration? Please explain, Usung Newton's second law and please answer correctly
Physics
1 answer:
Nitella [24]3 years ago
8 0

Answer:

1. Mike was riding in the wagon when it had the most acceleration because his light weight compared to Tim's weight required the least effort to move

2. Mike

Explanation:

According to Newton's second law of motion, force is proportional to te rate of change of momentum produced

Mathematically, we can write the above law as follows;

F = m × a

Where;

F = The force acting on the object

m = The mass of object in motion

a = The acceleration of the object

1. The given parameters in the question are;

The weight of Tim = 311 Newtons (70 lbs.)

The weight of Mike = 50 Newtons (50 lbs.)

The minimum force required to pull the wagon to constant speed = The weight of the wagon

With the assumption that the wagon has very little weight, we have

Therefore, when Tim gets in the wagon, the force, 'F' applied by Mike to pull the wagon to constant speed = Mass of Tim, m × Acceleration of the cart, a

Given that mass is proportional to weight, we can write;

Force from mike, Tim on the wagon F₁ = 311 N × a₁

Similarly when they switched places, we have;

Force from Tim, Mike on the wagon  = F₂ = 50 N × a₂

Therefore, for the same force, F₁ = F₂ = F, we have;

a₁ = F₁/(311 N) = F/(311 N)

a₂ = F₂/(50 N) = F/(50 N)

By fraction of numbers, F/(50 N) > F/(311 N) > N), therefore, a₂ > a₁

The acceleration of the wagon when Mike was on the wagon will be more than the acceleration of the wagon when Tim gets in the wagon because for the same applied force, the weight of Mike offer less resistance to move

2. Given that Sare and Mike have the same weight of 50 N each let F₃ represent the force with which she pulls Mike in the wagon, and F₁ represent the force with which Mike pulls her while she is on the wagon, we  are also given that F₃ > F₁

By Newton's second law of motion, we have;

a₃ = F₃/(50 N) and a₁ = F₁/(50 N)

From F₃ > F₁, we have;

F₃/(50 N) > F₁/(50 N)

Therefore;

a₃ > a₁

The acceleration of the wagon when Mike is being pulled by Sare, a₃, is greater than the acceleration of the wagon when Sare is pulled by Mike

Therefore, Mike is on the wagon when it has the greatest acceleration.

You might be interested in
a baby carriage is sitting at the top of a hill that is 21 m high. the carriage with the baby has a mass of 1.5 kg. the carriage
Serga [27]
Height of baby carriage from ground = 21m

Mass of carriage with baby = 1.5 kg

The carriage has potential energy by virtue of its height.

Potential energy = mgh = 1.5×10×21 = 315 J

Hence, potential energy of the carriage is 315 Joule.
7 0
4 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s.
marishachu [46]

Answer:

a) the magnitude of the force is

F= Q(\frac{kqs}{r^3}) and where k = 1/4πε₀

F = Qqs/4πε₀r³

b)  the magnitude of the torque on the dipole

τ = Qqs/4πε₀r²

Explanation:

from coulomb's law

E = \frac{kq}{r^{2} }

where k = 1/4πε₀

the expression of the electric field due to dipole at a distance r is

E(r) = \frac{kp}{r^{3} } , where p = q × s

E(r) = \frac{kqs}{r^{3} } where r>>s

a) find the magnitude of force due to the dipole

F=QE

F= Q(\frac{kqs}{r^3})

where k = 1/4πε₀

F = Qqs/4πε₀r³

b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces

τ = F sinθ × s

θ = 90°

note: sin90° = 1

τ = F × r

recall  F = Qqs/4πε₀r³

∴ τ = (Qqs/4πε₀r³) × r

τ = Qqs/4πε₀r²

8 0
3 years ago
A force F=0.12N is aplied on spring and spring elongates by 3cm . specific constant of spring ​
PilotLPTM [1.2K]

The spring constant is 4 N/m

Explanation:

When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

F=kx

where

F is the magnitude of the spring applied

k is the spring constant

x is the elongation of the spring, relative to its equilibrium position

For the spring in this problem, we have:

F = 0.12 N (force applied)

x = 3 cm = 0.03 m (elongation of the spring)

Therefore, we can solve the formula for k to find the spring constant:

k=\frac{F}{x}=\frac{0.12}{0.03}=4 N/m

Learn more about forces:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

4 0
3 years ago
It took 1500 Newton's of force to push a car 3 meters. How much work was done
denis23 [38]

Answer:

ow much work was done? W = F xD. IN X 2m = 2;. 2. A force of 15 newtons is ... 3. It took 50 joules to push a chair 5 meters across the floor. With what force was ... was done. How far was the rock lifted? W=FXD. D=1500 = 1.5m. Answer: :.5m ... A young man exerted a force of 9,000 newtons on a stalled car, but he was.

Explanation:

3 0
3 years ago
A ball has a mass of 0.046kg. Calculate the change in gravitational potential energy when the ball is lifted through a vertical
loris [4]

Answer:

PE=0.92414J and KE=0.28175J

Explanation:

Gravitational potential energy=mass*gravity*height

PE=mgh

Data,

M=0.046kg

H=2.05m

g=9.8m/s^2

PE=0.046kg * 9.8m/s^2 * 2.05m

PE =0.92414J

KE=1/2mv^2

M=0.046kg

V=3.5m/s

KE=[(0.046kg)*(3.5m/s)^2]\2

KE=0.28175J

3 0
3 years ago
Other questions:
  • Uzupełnij zdania właściwymi sformułowaniami. Wyobraź sobie, że między linę a siodełko karuzeli łańcuchowej wmontowany jest siłom
    8·1 answer
  • Soundproof rooms take advantage of which property of waves
    7·2 answers
  • Name the forces acting on a plastic bucket container water held above ground level in your hand. Discuss why the forces acting o
    15·1 answer
  • Consider two identical springs. At the start of an experiment, Spring A is already stretched out 3 cm, while Spring B remains at
    12·1 answer
  • Which of the following is a physical property?
    9·2 answers
  • an oil drop of mass 2×10^14 kg carries a charge of 8×10^-18C. The drop is stationary between two parallel plates 20mm apart with
    7·1 answer
  • What is the rue of experimental designs that are used in scientific research?
    9·1 answer
  • What is the wavelength of a sound wave traveling at 360 m/s and a
    8·1 answer
  • can someone please help me answer this in the next 15 minutes. ill give a brainiest to whoever can help me. tysm if u do!! :))
    13·1 answer
  • Temperature of 273K is the temperature at which water
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!