<span>carrying twice the weight and climbing twice as high</span>
Answer:
sweeps out equal areas in equal times.
Explanation:
As we know that there is no torque due to Sun on the planets revolving about the sun
so we will have

now we have

now we also know that

so rate of change in area is given as

so we will have


since angular momentum and mass is constant here so
all planets sweeps out equal areas in equal times.
<h2>
Option 3, 216 m is the correct answer.</h2>
Explanation:
We have initial velocity, u = 15 m/s
Time, t = 12 seconds
Final velocity, v = 21 m/s
We have equation of motion v = u + at
Substituting
21 = 15 + a x 12
a = 0.5 m/s²
Now we have equation of motion v² = u² + 2as
21² = 15² + 2 x 0.5 x s
s = 216 m
Displacement = 216 m
Option 3, 216 m is the correct answer.
Explanation:
There are three forces on the bicycle:
Reaction force Rp pushing up at P,
Reaction force Rq pushing up at Q,
Weight force mg pulling down at O.
There are four equations you can write: sum of the forces in the y direction, sum of the moments at P, sum of the moments at Q, and sum of the moments at O.
Sum of the forces in the y direction:
Rp + Rq − (15)(9.8) = 0
Rp + Rq − 147 = 0
Sum of the moments at P:
(15)(9.8)(0.30) − Rq(1) = 0
44.1 − Rq = 0
Sum of the moments at Q:
Rp(1) − (15)(9.8)(0.70) = 0
Rp − 102.9 = 0
Sum of the moments at O:
Rp(0.30) − Rq(0.70) = 0
0.3 Rp − 0.7 Rq = 0
Any combination of these equations will work.
The car will speed up because if the air resistance and friction forces are reacting in the direction opposite to the Applied force, The Net force will still be in the direction of the car's motion and since F=ma a will cause your velocity to increase