From the fact that oxygen is in group 16 and carbon is in group 14, the structure of CO2 must be O=C=O. In methane, there is no bond between any of the hydrogen atoms. The structure of H2O2 is H–O–O–H.
Carbon is in group 14 hence it has four valence electrons and oxygen is in group 16 hence it has six valence electrons. This implies that each oxygen atom will share four electrons with carbon in a covalent bond to form the structure O=C=O.
In CH4, we know that carbon is tetravalent so it forms for bonds. Therefore, there is no bond between hydrogen atoms so it bonds with each hydrogen atom; hydrogen only forms one bond.
In H2O2, there is the peroxide ion that has the structure O-O. Hence, the correct structure of H2O2 is H–O–O–H.
Learn more: brainly.com/question/24775418
Answer : The correct option is, (C) 2, 4 and 5.
Explanation :
Combustion reaction : It is a type of reaction in which a hydrocarbon react with an oxygen molecule to give carbon dioxide, water as a product.
For example : Methane react with oxygen to give carbon dioxide and water.

In the given list of chemical substances,
are in oxide form. They can not be both reactant and product of a single combustion reaction.
In the given list,
is the only hydrocarbon which shows a combustion reaction. That means
react with
to give
and
as a product.
The balanced combustion reaction of
is,

Therefore, the correct answer is, (C) 2, 4, and 5.
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
Answer:
13.53 kJ
Explanation:
The energy of a gas can be calculated by the equation:
E = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.314 J/mol.K), and T is the temperature.
E = (3/2)*3.5*8.314*310
E = 13,531.035 J
E = 13.53 kJ