The equilibrium membrane potential is 41.9 mV.
To calculate the membrane potential, we use the <em>Nernst Equation</em>:
<em>V</em>_Na = (<em>RT</em>)/(<em>zF</em>) ln{[Na]_o/[Na]_ i}
where
• <em>V</em>_Na = the equilibrium membrane potential due to the sodium ions
• <em>R</em> = the universal gas constant [8.314 J·K^(-1)mol^(-1)]
• <em>T</em> = the Kelvin temperature
• <em>z</em> = the charge on the ion (+1)
• <em>F </em>= the Faraday constant [96 485 C·mol^(-1) = 96 485 J·V^(-1)mol^(-1)]
• [Na]_o = the concentration of Na^(+) outside the cell
• [Na]_i = the concentration of Na^(+) inside the cell
∴ <em>V</em>_Na =
[8.314 J·K^(-1)mol^(-1) × 293.15 K]/[1 × 96 485 J·V^(-1)mol^(-1)] ln(142 mM/27 mM) = 0.025 26 V × ln5.26 = 1.66× 25.26 mV = 41.9 mV
1 kpa = 0.0098692327 atm so just multiply that by 45.6
Answer:
See explanation
Explanation:
The essence of chemical bonding is in order to attain minimum energy. The minimum energy state is the most stable state of a chemical system.
As the distance of separation between atoms decreases, the potential energy of the system decreases accordingly.
An optimum distance is reached when the two atoms attain the lowest potential energy. This is designated as the bond distance of the two atoms.
Hence two atoms have lower potential energy when bonded than when separated at large distance.
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au